Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques
Chun-Chun Gao, Man Li, Wei Deng, Chun-Hui Ma, Yu-Sheng Chen, Yong-Qiao Sun, Tingfu Du, Qian-Lan Liu, Wen-Jie Li, Bing Zhang, Lihong Sun, Si-Meng Liu, Fengli Li, Feifei Qi, Yajin Qu, Xinyang Ge, Jiangning Liu, Peng Wang, Yamei Niu, Zhiyong Liang, Yong-Liang Zhao, Bo Huang, Xiao-Zhong Peng, Ying Yang, Chuan Qin, Wei-Min Tong, Yun-Gui Yang
Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques
SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.
SARS-CoV-2 / NRP1 / inflammation / central nervous system / viral encephalitis / rhesus macaque
[1] |
AckermannM, Verleden SE, KuehnelM, HaverichA, WelteT, LaengerF, Vanstapel A, WerleinC, StarkH, Tzankov A et al (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med 383:120–128
CrossRef
Google scholar
|
[2] |
AshburnerM, BallCA, BlakeJA, Botstein D, ButlerH, CherryJM, DavisAP, DolinskiK, Dwight SS, EppigJT et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29
CrossRef
Google scholar
|
[3] |
BatesTA, LeierHC, LyskiZL, McBride SK, CoulterFJ, WeinsteinJB, Goodman JR, LuZ, SiegelSAR, Sullivan P et al (2021) Neutralization of SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum. Nat Commun 12:5135
CrossRef
Google scholar
|
[4] |
BianX-W, TeamtC-P (2020) Autopsy of COVID-19 victims in China. Natl Sci Rev 7:1414–1418
CrossRef
Google scholar
|
[5] |
BindeaG, Mlecnik B, HacklH, CharoentongP, Tosolini M, KirilovskyA, FridmanWH, PagesF, TrajanoskiZ, Galon J (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093
CrossRef
Google scholar
|
[6] |
BoehmE, KronigI, NeherRA, Eckerle I, VetterP, KaiserL, CentreG, and Geneva Centre for Emerging ViralD (2021) Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect 27:1109–1117
CrossRef
Google scholar
|
[7] |
BolgerAM, LohseM, UsadelB (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
CrossRef
Google scholar
|
[8] |
CaiY, ZhangJ, XiaoT, Lavine CL, RawsonS, PengH, ZhuH, AnandK, Tong P, GautamA et al (2021) Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 373:642–648
CrossRef
Google scholar
|
[9] |
Cantuti-CastelvetriL, Ojha R, PedroLD, DjannatianM, FranzJ, KuivanenS, van der MeerF, KallioK, KayaT, Anastasina M et al (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856–860
CrossRef
Google scholar
|
[10] |
CaoX (2021) ISG15 secretion exacerbates inflammation in SARS-CoV-2 infection. Nat Immunol 22:1360–1362
CrossRef
Google scholar
|
[11] |
ChapinJC, HajjarKA (2015) Fibrinolysis and the control of blood coagulation. Blood Rev 29:17–24
CrossRef
Google scholar
|
[12] |
ChenC, ChenH, ZhangY, Thomas HR, FrankMH, HeY, XiaR (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202
CrossRef
Google scholar
|
[13] |
ChenL, Marishta A, EllisonCE, VerziMP (2021) Identification of transcription factors regulating SARS-CoV-2 entry genes in the intestine. Cell Mol Gastroenterol Hepatol 11:181–184
CrossRef
Google scholar
|
[14] |
ConwayJR, LexA, GehlenborgN (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33:2938–2940
CrossRef
Google scholar
|
[15] |
da HuangW, Sherman BT, LempickiRA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13
CrossRef
Google scholar
|
[16] |
da HuangW, Sherman BT, LempickiRA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57
CrossRef
Google scholar
|
[17] |
DalyJL, Simonetti B, KleinK, ChenKE, Williamson MK, Anton-PlagaroC, ShoemarkDK, Simon-Gracia L, BauerM, HollandiR et al (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370:861–865
CrossRef
Google scholar
|
[18] |
DaviesJ, Randeva HS, ChathaK, HallM, Spandidos DA, KarterisE, KyrouI (2020) Neuropilin1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID19. Mol Med Rep 22:4221–4226
CrossRef
Google scholar
|
[19] |
DemidenkoE (2018) The next-generation K-means algorithm. Stat Anal Data Min 11:153–166
CrossRef
Google scholar
|
[20] |
DengW, BaoL, LiuJ, XiaoC, LiuJ, XueJ, LvQ, QiF, GaoH, YuP et al (2020) Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 369:818–823
CrossRef
Google scholar
|
[21] |
DeyJ, AlamMT, ChandraS, Gupta J, RayU, SrivastavaAK, Tripathi PP (2021) Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. J Med Virol 93:1296–1303
CrossRef
Google scholar
|
[22] |
FainardiV, LongoF, ChettaA, Esposito S, PisiG (2020) SARS-CoV-2 infection in patients with cystic fibrosis. An overview. Acta Biomed 91:e2020035
|
[23] |
GaoQ, BaoL, MaoH, WangL, XuK, YangM, LiY, ZhuL, WangN, Lv Z et al (2020) Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369:77–81
CrossRef
Google scholar
|
[24] |
Garcia-BeltranWF, Lam EC, St DenisK, NitidoAD, GarciaZH, HauserBM, Feldman J, PavlovicMN, GregoryDJ, Poznansky MC et al (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184:2372–2383
CrossRef
Google scholar
|
[25] |
GiordoR, Paliogiannis P, MangoniAA, PintusG (2021) SARS-CoV-2 and endothelial cell interaction in COVID-19: molecular perspectives. Vasc Biol 3:R15–R23
CrossRef
Google scholar
|
[26] |
Gudowska-SawczukM, Mroczko B (2021) The role of Neuropilin-1 (NRP-1) in SARS-CoV-2 infection: review. J Clin Med 10:2772
CrossRef
Google scholar
|
[27] |
GuptaA, Madhavan MV, SehgalK, NairN, Mahajan S, SehrawatTS, BikdeliB, Ahluwalia N, AusielloJC, WanEY et al (2020) Extrapulmonary manifestations of COVID-19. Nat Med 26:1017–1032
CrossRef
Google scholar
|
[28] |
HanH, ChoJW, LeeS, YunA, KimH, BaeD, YangS, Kim CY, LeeM, KimE et al (2018) TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 46:D380–D386
CrossRef
Google scholar
|
[29] |
HanH, YangL, LiuR, LiuF, WuKL, LiJ, LiuXH, Zhu CL (2020a) Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 58:1116–1120
CrossRef
Google scholar
|
[30] |
HanX, ZhouZ, FeiL, SunH, WangR, Chen Y, ChenH, WangJ, TangH, GeW et al (2020b) Construction of a human cell landscape at single-cell level. Nature 581:303–309
CrossRef
Google scholar
|
[31] |
HarrisonAG, LinT, WangP (2020) Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol 41:1100–1115
CrossRef
Google scholar
|
[32] |
HarveyWT, Carabelli AM, JacksonB, GuptaRK, Thomson EC, HarrisonEM, LuddenC, ReeveR, RambautA, Consortium C-GU et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19:409–424
CrossRef
Google scholar
|
[33] |
KarimSSA, KarimQA (2021) Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet 398:2126–2128
CrossRef
Google scholar
|
[34] |
KimMS, PintoSM, GetnetD, Nirujogi RS, MandaSS, ChaerkadyR, Madugundu AK, KelkarDS, IsserlinR, JainS et al (2014) A draft map of the human proteome. Nature 509:575–581
CrossRef
Google scholar
|
[35] |
KimD, Langmead B, SalzbergSL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
CrossRef
Google scholar
|
[36] |
KoyuncuOO, HogueIB, EnquistLW (2013) Virus infections in the nervous system. Cell Host Microbe 13:379–393
CrossRef
Google scholar
|
[37] |
KudoseS, BatalI, SantorielloD, XuK, Barasch J, PelegY, CanettaP, RatnerLE, MarasaM, Gharavi AG et al (2020) Kidney biopsy findings in patients with COVID-19. J Am Soc Nephrol 31:1959–1968
CrossRef
Google scholar
|
[38] |
LamersMM, BeumerJ, van der VaartJ, KnoopsK, Puschhof J, BreugemTI, RavelliRBG, Paul van Schayck J, MykytynAZ, DuimelHQ et al (2020) SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54
CrossRef
Google scholar
|
[39] |
LiH, Handsaker B, WysokerA, FennellT, RuanJ, HomerN, Marth G, AbecasisG, DurbinR, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
CrossRef
Google scholar
|
[40] |
LiMY, LiL, ZhangY, Wang XS (2020) Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 9:45
CrossRef
Google scholar
|
[41] |
LiaoY, SmythGK, ShiW (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930
CrossRef
Google scholar
|
[42] |
MartinM (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17:10–12
CrossRef
Google scholar
|
[43] |
MistryP, Barmania F, MelletJ, PetaK, Strydom A, ViljoenIM, JamesW, GordonS, PepperMS (2021) SARS-CoV-2 variants, vaccines, and host immunity. Front Immunol 12:809244
CrossRef
Google scholar
|
[44] |
MostafaviS, Yoshida H, MoodleyD, LeBoiteH, Rothamel K, RajT, YeCJ, Chevrier N, ZhangSY, FengT et al (2016) Parsing the interferon transcriptional network and its disease associations. Cell 164:564–578
CrossRef
Google scholar
|
[45] |
MuszbekL, Bereczky Z, BagolyZ, KomaromiI, KatonaE (2011) Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 91:931–972
CrossRef
Google scholar
|
[46] |
NewmanAM, LiuCL, GreenMR, Gentles AJ, FengW, XuY, HoangCD, DiehnM, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457
CrossRef
Google scholar
|
[47] |
NieX, QianL, SunR, HuangB, DongX, Xiao Q, ZhangQ, LuT, YueL, ChenS et al (2021) Multi-organ proteomic landscape of COVID-19 autopsies. Cell 184:775–791
CrossRef
Google scholar
|
[48] |
PaltaS, SaroaR, PaltaA (2014) Overview of the coagulation system. Indian J Anaesth 58:515–523
CrossRef
Google scholar
|
[49] |
PeirisJS, ChuCM, ChengVC, Chan KS, HungIF, PoonLL, LawKI, TangBS, Hon TY, ChanCS et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361:1767–1772
CrossRef
Google scholar
|
[50] |
PeyvandiF, Garagiola I, BaroncianiL (2011) Role of von Willebrand factor in the haemostasis. Blood Transfus 9(
|
[51] |
PuellesVG, Lutgehetmann M, LindenmeyerMT, SperhakeJP, WongMN, AllweissL, Chilla S, HeinemannA, WannerN, LiuS et al (2020) Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 383:590–592
CrossRef
Google scholar
|
[52] |
QuinlanAR, HallIM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842
CrossRef
Google scholar
|
[53] |
RamaniA, MullerL, OstermannPN, Gabriel E, Abida-IslamP, Muller-SchiffmannA, Mariappan A, GoureauO, GruellH, WalkerA et al (2020) SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 39:e106230
CrossRef
Google scholar
|
[54] |
RobinsonMD, McCarthy DJ, SmythGK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140
CrossRef
Google scholar
|
[55] |
RoncoC, ReisT, Husain-SyedF (2020) Management of acute kidney injury in patients with COVID-19. Lancet Respir Med 8:738–742
CrossRef
Google scholar
|
[56] |
RuanQ, YangK, WangW, Jiang L, SongJ (2020) Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 46:846–848
CrossRef
Google scholar
|
[57] |
Sa RiberoM, Jouvenet N, DreuxM, NisoleS (2020) Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog 16:e1008737
CrossRef
Google scholar
|
[58] |
SchreiberRD, HicksLJ, CeladaA, Buchmeier NA, GrayPW (1985) Monoclonal antibodies to murine gamma-interferon which differentially modulate macrophage activation and antiviral activity. J Immunol 134:1609–1618
|
[59] |
SchwabenlandM, SalieH, TanevskiJ, Killmer S, LagoMS, SchlaakAE, MayerL, MatschkeJ, Puschel K, FitzekA et al (2021) Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54:1594–1610
CrossRef
Google scholar
|
[60] |
ShannonP, Markiel A, OzierO, BaligaNS, WangJT, RamageD, Amin N, SchwikowskiB, IdekerT (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
CrossRef
Google scholar
|
[61] |
ShaoX, LiaoJ, LiC, LuX, ChengJ, Fan X (2020) Cell TalkDB: a manually curated database of ligand-receptor interactions in humans and mice. Brief Bioinform 22:269
CrossRef
Google scholar
|
[62] |
SicaA, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795
CrossRef
Google scholar
|
[63] |
SongE, ZhangC, IsraelowB, Lu-Culligan A, PradoAV, SkriabineS, LuP, WeizmanOE, Liu F, DaiY et al (2021) Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med.
CrossRef
Google scholar
|
[64] |
StolpB, SternM, AmbielI, Hofmann K, MorathK, GallucciL, Cortese M, BartenschlagerR, RuggieriA, GrawF et al (2022) SARS-CoV-2 variants of concern display enhanced intrinsic pathogenic properties and expanded organ tropism in mouse models. Cell Rep 38:110387
CrossRef
Google scholar
|
[65] |
SubramanianA, TamayoP, MoothaVK, Mukherjee S, EbertBL, GilletteMA, Paulovich A, PomeroySL, GolubTR, LanderES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550
CrossRef
Google scholar
|
[66] |
SzklarczykD, GableAL, LyonD, Junge A, WyderS, Huerta-CepasJ, Simonovic M, DonchevaNT, MorrisJH, BorkP et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613
CrossRef
Google scholar
|
[67] |
TangX, YangM, DuanZ, Liao Z, LiuL, ChengR, FangM, WangG, Liu H, XuJ, et al (2020) Transferrin receptor is another receptor for SARS-CoV-2 entry. bioRxiv
CrossRef
Google scholar
|
[68] |
TaquetM, GeddesJR, HusainM, Luciano S, HarrisonPJ (2021) 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8:416–427
CrossRef
Google scholar
|
[69] |
ThorvaldsdottirH, Robinson JT, MesirovJP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192
CrossRef
Google scholar
|
[70] |
TianS, XiongY, LiuH, NiuL, GuoJ, LiaoM, XiaoSY (2020) Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol 33:1007–1014
CrossRef
Google scholar
|
[71] |
TipnisSR, HooperNM, HydeR, Karran E, ChristieG, TurnerAJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243
CrossRef
Google scholar
|
[72] |
VargaZ, Flammer AJ, SteigerP, HabereckerM, Andermatt R, ZinkernagelAS, MehraMR, Schuepbach RA, RuschitzkaF, MochH (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–1418
CrossRef
Google scholar
|
[73] |
VialC, Calderon JF, KleinAD (2021) NPC1 as a modulator of disease severity and viral entry of SARS-CoV-2. Curr Mol Med 21:2–4
CrossRef
Google scholar
|
[74] |
von WeyhernCH, Kaufmann I, NeffF, KremerM (2020) Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. The Lancet 395:e109
CrossRef
Google scholar
|
[75] |
WangGF, LiW, LiK (2010) Acute encephalopathy and encephalitis caused by influenza virus infection. Curr Opin Neurol 23:305–311
CrossRef
Google scholar
|
[76] |
WangD, HuB, HuC, ZhuF, LiuX, ZhangJ, WangB, Xiang H, ChengZ, XiongY et al (2020) Clinical characteristics of 138 hospitalized patients wit 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323:1061–1069
CrossRef
Google scholar
|
[77] |
WangR, ZhangQ, GeJ, RenW, ZhangR, Lan J, JuB, SuB, YuF, ChenP et al (2021a) Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 54:1611–1621
CrossRef
Google scholar
|
[78] |
WangS, QiuZ, HouY, DengX, XuW, ZhengT, WuP, XieS, BianW, Zhang C et al (2021b) AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res 31:126–140
CrossRef
Google scholar
|
[79] |
WenzelJ, LampeJ, Muller-FielitzH, SchusterR, ZilleM, MullerK, Krohn M, KorbelinJ, ZhangL, Ozorhan U et al (2021) The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci 24:1522–1533
CrossRef
Google scholar
|
[80] |
WichmannD (2020) Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med 173:1030
CrossRef
Google scholar
|
[81] |
WichmannD, Sperhake JP, LutgehetmannM, SteurerS, EdlerC, HeinemannA, Heinrich F, MushumbaH, KniepI, Schroder AS et al (2020) Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 173:268–277
CrossRef
Google scholar
|
[82] |
WrappD, WangN, CorbettKS, Goldsmith JA, HsiehCL, AbionaO, GrahamBS, McLellanJS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263
CrossRef
Google scholar
|
[83] |
YangM, ChenS, HuangB, Zhong JM, SuH, ChenYJ, CaoQ, MaL, HeJ, LiXF et al (2020) Pathological findings in the testes of COVID-19 patients: clinical implications. Eur Urol Focus 6:1124–1129
CrossRef
Google scholar
|
[84] |
YatesAD, Achuthan P, AkanniW, AllenJ, AllenJ, Alvarez-JarretaJ, AmodeMR, ArmeanIM, AzovAG, Bennett R et al (2020) Ensembl 2020. Nucleic Acids Res 48:D682–D688
CrossRef
Google scholar
|
[85] |
YuF, YanL, WangN, Yang S, WangL, TangY, GaoG, WangS, Ma C, XieR et al (2020a) Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin Infect Dis 71:793–798
CrossRef
Google scholar
|
[86] |
YuP, QiF, XuY, LiF, LiuP, LiuJ, BaoL, DengW, GaoH, XiangZ et al (2020b) Age-related rhesus macaque models of COVID-19. Animal Model Exp Med 3:93–97
CrossRef
Google scholar
|
[87] |
ZhangBZ, ChuH, HanS, ShuaiH, DengJ, Hu YF, GongHR, LeeAC, ZouZ, YauT et al (2020a) SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 30:928–931
CrossRef
Google scholar
|
[88] |
ZhangC, ShiL, WangF-S (2020b) Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 5:428–430
CrossRef
Google scholar
|
[89] |
ZhangL, ZhouL, BaoL, LiuJ, ZhuH, LvQ, LiuR, ChenW, TongW, Wei Q et al (2021) SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 6:337
CrossRef
Google scholar
|
[90] |
ZhengYY, MaYT, ZhangJY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17:259–260
CrossRef
Google scholar
|
[91] |
ZhouF, YuT, DuR, FanG, LiuY, LiuZ, XiangJ, Wang Y, SongB, GuX et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–1062
CrossRef
Google scholar
|
[92] |
ZhuN, ZhangD, WangW, Li X, YangB, SongJ, ZhaoX, HuangB, Shi W, LuR et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733
CrossRef
Google scholar
|
[93] |
ZieglerCGK, AllonSJ, NyquistSK, Mbano IM, MiaoVN, TzouanasCN, CaoY, YousifAS, Bals J, HauserBM et al (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181:1016–1035
CrossRef
Google scholar
|
/
〈 | 〉 |