Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques

Chun-Chun Gao , Man Li , Wei Deng , Chun-Hui Ma , Yu-Sheng Chen , Yong-Qiao Sun , Tingfu Du , Qian-Lan Liu , Wen-Jie Li , Bing Zhang , Lihong Sun , Si-Meng Liu , Fengli Li , Feifei Qi , Yajin Qu , Xinyang Ge , Jiangning Liu , Peng Wang , Yamei Niu , Zhiyong Liang , Yong-Liang Zhao , Bo Huang , Xiao-Zhong Peng , Ying Yang , Chuan Qin , Wei-Min Tong , Yun-Gui Yang

Protein Cell ›› 2022, Vol. 13 ›› Issue (12) : 920 -939.

PDF (17523KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (12) : 920 -939. DOI: 10.1007/s13238-022-00915-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques

Author information +
History +
PDF (17523KB)

Abstract

SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.

Keywords

SARS-CoV-2 / NRP1 / inflammation / central nervous system / viral encephalitis / rhesus macaque

Cite this article

Download citation ▾
Chun-Chun Gao, Man Li, Wei Deng, Chun-Hui Ma, Yu-Sheng Chen, Yong-Qiao Sun, Tingfu Du, Qian-Lan Liu, Wen-Jie Li, Bing Zhang, Lihong Sun, Si-Meng Liu, Fengli Li, Feifei Qi, Yajin Qu, Xinyang Ge, Jiangning Liu, Peng Wang, Yamei Niu, Zhiyong Liang, Yong-Liang Zhao, Bo Huang, Xiao-Zhong Peng, Ying Yang, Chuan Qin, Wei-Min Tong, Yun-Gui Yang. Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein Cell, 2022, 13(12): 920-939 DOI:10.1007/s13238-022-00915-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AckermannM, Verleden SE, KuehnelM, HaverichA, WelteT, LaengerF, Vanstapel A, WerleinC, StarkH, Tzankov A et al (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med 383:120–128

[2]

AshburnerM, BallCA, BlakeJA, Botstein D, ButlerH, CherryJM, DavisAP, DolinskiK, Dwight SS, EppigJT et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

[3]

BatesTA, LeierHC, LyskiZL, McBride SK, CoulterFJ, WeinsteinJB, Goodman JR, LuZ, SiegelSAR, Sullivan P et al (2021) Neutralization of SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum. Nat Commun 12:5135

[4]

BianX-W, TeamtC-P (2020) Autopsy of COVID-19 victims in China. Natl Sci Rev 7:1414–1418

[5]

BindeaG, Mlecnik B, HacklH, CharoentongP, Tosolini M, KirilovskyA, FridmanWH, PagesF, TrajanoskiZ, Galon J (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

[6]

BoehmE, KronigI, NeherRA, Eckerle I, VetterP, KaiserL, CentreG, and Geneva Centre for Emerging ViralD (2021) Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clin Microbiol Infect 27:1109–1117

[7]

BolgerAM, LohseM, UsadelB (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

[8]

CaiY, ZhangJ, XiaoT, Lavine CL, RawsonS, PengH, ZhuH, AnandK, Tong P, GautamA et al (2021) Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 373:642–648

[9]

Cantuti-CastelvetriL, Ojha R, PedroLD, DjannatianM, FranzJ, KuivanenS, van der MeerF, KallioK, KayaT, Anastasina M et al (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856–860

[10]

CaoX (2021) ISG15 secretion exacerbates inflammation in SARS-CoV-2 infection. Nat Immunol 22:1360–1362

[11]

ChapinJC, HajjarKA (2015) Fibrinolysis and the control of blood coagulation. Blood Rev 29:17–24

[12]

ChenC, ChenH, ZhangY, Thomas HR, FrankMH, HeY, XiaR (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

[13]

ChenL, Marishta A, EllisonCE, VerziMP (2021) Identification of transcription factors regulating SARS-CoV-2 entry genes in the intestine. Cell Mol Gastroenterol Hepatol 11:181–184

[14]

ConwayJR, LexA, GehlenborgN (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33:2938–2940

[15]

da HuangW, Sherman BT, LempickiRA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

[16]

da HuangW, Sherman BT, LempickiRA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

[17]

DalyJL, Simonetti B, KleinK, ChenKE, Williamson MK, Anton-PlagaroC, ShoemarkDK, Simon-Gracia L, BauerM, HollandiR et al (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370:861–865

[18]

DaviesJ, Randeva HS, ChathaK, HallM, Spandidos DA, KarterisE, KyrouI (2020) Neuropilin1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID19. Mol Med Rep 22:4221–4226

[19]

DemidenkoE (2018) The next-generation K-means algorithm. Stat Anal Data Min 11:153–166

[20]

DengW, BaoL, LiuJ, XiaoC, LiuJ, XueJ, LvQ, QiF, GaoH, YuP et al (2020) Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 369:818–823

[21]

DeyJ, AlamMT, ChandraS, Gupta J, RayU, SrivastavaAK, Tripathi PP (2021) Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. J Med Virol 93:1296–1303

[22]

FainardiV, LongoF, ChettaA, Esposito S, PisiG (2020) SARS-CoV-2 infection in patients with cystic fibrosis. An overview. Acta Biomed 91:e2020035

[23]

GaoQ, BaoL, MaoH, WangL, XuK, YangM, LiY, ZhuL, WangN, Lv Z et al (2020) Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369:77–81

[24]

Garcia-BeltranWF, Lam EC, St DenisK, NitidoAD, GarciaZH, HauserBM, Feldman J, PavlovicMN, GregoryDJ, Poznansky MC et al (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184:2372–2383

[25]

GiordoR, Paliogiannis P, MangoniAA, PintusG (2021) SARS-CoV-2 and endothelial cell interaction in COVID-19: molecular perspectives. Vasc Biol 3:R15–R23

[26]

Gudowska-SawczukM, Mroczko B (2021) The role of Neuropilin-1 (NRP-1) in SARS-CoV-2 infection: review. J Clin Med 10:2772

[27]

GuptaA, Madhavan MV, SehgalK, NairN, Mahajan S, SehrawatTS, BikdeliB, Ahluwalia N, AusielloJC, WanEY et al (2020) Extrapulmonary manifestations of COVID-19. Nat Med 26:1017–1032

[28]

HanH, ChoJW, LeeS, YunA, KimH, BaeD, YangS, Kim CY, LeeM, KimE et al (2018) TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 46:D380–D386

[29]

HanH, YangL, LiuR, LiuF, WuKL, LiJ, LiuXH, Zhu CL (2020a) Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 58:1116–1120

[30]

HanX, ZhouZ, FeiL, SunH, WangR, Chen Y, ChenH, WangJ, TangH, GeW et al (2020b) Construction of a human cell landscape at single-cell level. Nature 581:303–309

[31]

HarrisonAG, LinT, WangP (2020) Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol 41:1100–1115

[32]

HarveyWT, Carabelli AM, JacksonB, GuptaRK, Thomson EC, HarrisonEM, LuddenC, ReeveR, RambautA, Consortium C-GU et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19:409–424

[33]

KarimSSA, KarimQA (2021) Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet 398:2126–2128

[34]

KimMS, PintoSM, GetnetD, Nirujogi RS, MandaSS, ChaerkadyR, Madugundu AK, KelkarDS, IsserlinR, JainS et al (2014) A draft map of the human proteome. Nature 509:575–581

[35]

KimD, Langmead B, SalzbergSL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

[36]

KoyuncuOO, HogueIB, EnquistLW (2013) Virus infections in the nervous system. Cell Host Microbe 13:379–393

[37]

KudoseS, BatalI, SantorielloD, XuK, Barasch J, PelegY, CanettaP, RatnerLE, MarasaM, Gharavi AG et al (2020) Kidney biopsy findings in patients with COVID-19. J Am Soc Nephrol 31:1959–1968

[38]

LamersMM, BeumerJ, van der VaartJ, KnoopsK, Puschhof J, BreugemTI, RavelliRBG, Paul van Schayck J, MykytynAZ, DuimelHQ et al (2020) SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54

[39]

LiH, Handsaker B, WysokerA, FennellT, RuanJ, HomerN, Marth G, AbecasisG, DurbinR, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

[40]

LiMY, LiL, ZhangY, Wang XS (2020) Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 9:45

[41]

LiaoY, SmythGK, ShiW (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

[42]

MartinM (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17:10–12

[43]

MistryP, Barmania F, MelletJ, PetaK, Strydom A, ViljoenIM, JamesW, GordonS, PepperMS (2021) SARS-CoV-2 variants, vaccines, and host immunity. Front Immunol 12:809244

[44]

MostafaviS, Yoshida H, MoodleyD, LeBoiteH, Rothamel K, RajT, YeCJ, Chevrier N, ZhangSY, FengT et al (2016) Parsing the interferon transcriptional network and its disease associations. Cell 164:564–578

[45]

MuszbekL, Bereczky Z, BagolyZ, KomaromiI, KatonaE (2011) Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 91:931–972

[46]

NewmanAM, LiuCL, GreenMR, Gentles AJ, FengW, XuY, HoangCD, DiehnM, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457

[47]

NieX, QianL, SunR, HuangB, DongX, Xiao Q, ZhangQ, LuT, YueL, ChenS et al (2021) Multi-organ proteomic landscape of COVID-19 autopsies. Cell 184:775–791

[48]

PaltaS, SaroaR, PaltaA (2014) Overview of the coagulation system. Indian J Anaesth 58:515–523

[49]

PeirisJS, ChuCM, ChengVC, Chan KS, HungIF, PoonLL, LawKI, TangBS, Hon TY, ChanCS et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361:1767–1772

[50]

PeyvandiF, Garagiola I, BaroncianiL (2011) Role of von Willebrand factor in the haemostasis. Blood Transfus 9(Suppl 2):s3-8

[51]

PuellesVG, Lutgehetmann M, LindenmeyerMT, SperhakeJP, WongMN, AllweissL, Chilla S, HeinemannA, WannerN, LiuS et al (2020) Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 383:590–592

[52]

QuinlanAR, HallIM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

[53]

RamaniA, MullerL, OstermannPN, Gabriel E, Abida-IslamP, Muller-SchiffmannA, Mariappan A, GoureauO, GruellH, WalkerA et al (2020) SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 39:e106230

[54]

RobinsonMD, McCarthy DJ, SmythGK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

[55]

RoncoC, ReisT, Husain-SyedF (2020) Management of acute kidney injury in patients with COVID-19. Lancet Respir Med 8:738–742

[56]

RuanQ, YangK, WangW, Jiang L, SongJ (2020) Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 46:846–848

[57]

Sa RiberoM, Jouvenet N, DreuxM, NisoleS (2020) Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog 16:e1008737

[58]

SchreiberRD, HicksLJ, CeladaA, Buchmeier NA, GrayPW (1985) Monoclonal antibodies to murine gamma-interferon which differentially modulate macrophage activation and antiviral activity. J Immunol 134:1609–1618

[59]

SchwabenlandM, SalieH, TanevskiJ, Killmer S, LagoMS, SchlaakAE, MayerL, MatschkeJ, Puschel K, FitzekA et al (2021) Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54:1594–1610

[60]

ShannonP, Markiel A, OzierO, BaligaNS, WangJT, RamageD, Amin N, SchwikowskiB, IdekerT (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

[61]

ShaoX, LiaoJ, LiC, LuX, ChengJ, Fan X (2020) Cell TalkDB: a manually curated database of ligand-receptor interactions in humans and mice. Brief Bioinform 22:269

[62]

SicaA, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

[63]

SongE, ZhangC, IsraelowB, Lu-Culligan A, PradoAV, SkriabineS, LuP, WeizmanOE, Liu F, DaiY et al (2021) Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med.

[64]

StolpB, SternM, AmbielI, Hofmann K, MorathK, GallucciL, Cortese M, BartenschlagerR, RuggieriA, GrawF et al (2022) SARS-CoV-2 variants of concern display enhanced intrinsic pathogenic properties and expanded organ tropism in mouse models. Cell Rep 38:110387

[65]

SubramanianA, TamayoP, MoothaVK, Mukherjee S, EbertBL, GilletteMA, Paulovich A, PomeroySL, GolubTR, LanderES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

[66]

SzklarczykD, GableAL, LyonD, Junge A, WyderS, Huerta-CepasJ, Simonovic M, DonchevaNT, MorrisJH, BorkP et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

[67]

TangX, YangM, DuanZ, Liao Z, LiuL, ChengR, FangM, WangG, Liu H, XuJ, et al (2020) Transferrin receptor is another receptor for SARS-CoV-2 entry. bioRxiv

[68]

TaquetM, GeddesJR, HusainM, Luciano S, HarrisonPJ (2021) 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8:416–427

[69]

ThorvaldsdottirH, Robinson JT, MesirovJP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

[70]

TianS, XiongY, LiuH, NiuL, GuoJ, LiaoM, XiaoSY (2020) Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol 33:1007–1014

[71]

TipnisSR, HooperNM, HydeR, Karran E, ChristieG, TurnerAJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243

[72]

VargaZ, Flammer AJ, SteigerP, HabereckerM, Andermatt R, ZinkernagelAS, MehraMR, Schuepbach RA, RuschitzkaF, MochH (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–1418

[73]

VialC, Calderon JF, KleinAD (2021) NPC1 as a modulator of disease severity and viral entry of SARS-CoV-2. Curr Mol Med 21:2–4

[74]

von WeyhernCH, Kaufmann I, NeffF, KremerM (2020) Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. The Lancet 395:e109

[75]

WangGF, LiW, LiK (2010) Acute encephalopathy and encephalitis caused by influenza virus infection. Curr Opin Neurol 23:305–311

[76]

WangD, HuB, HuC, ZhuF, LiuX, ZhangJ, WangB, Xiang H, ChengZ, XiongY et al (2020) Clinical characteristics of 138 hospitalized patients wit 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323:1061–1069

[77]

WangR, ZhangQ, GeJ, RenW, ZhangR, Lan J, JuB, SuB, YuF, ChenP et al (2021a) Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 54:1611–1621

[78]

WangS, QiuZ, HouY, DengX, XuW, ZhengT, WuP, XieS, BianW, Zhang C et al (2021b) AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res 31:126–140

[79]

WenzelJ, LampeJ, Muller-FielitzH, SchusterR, ZilleM, MullerK, Krohn M, KorbelinJ, ZhangL, Ozorhan U et al (2021) The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci 24:1522–1533

[80]

WichmannD (2020) Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med 173:1030

[81]

WichmannD, Sperhake JP, LutgehetmannM, SteurerS, EdlerC, HeinemannA, Heinrich F, MushumbaH, KniepI, Schroder AS et al (2020) Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 173:268–277

[82]

WrappD, WangN, CorbettKS, Goldsmith JA, HsiehCL, AbionaO, GrahamBS, McLellanJS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263

[83]

YangM, ChenS, HuangB, Zhong JM, SuH, ChenYJ, CaoQ, MaL, HeJ, LiXF et al (2020) Pathological findings in the testes of COVID-19 patients: clinical implications. Eur Urol Focus 6:1124–1129

[84]

YatesAD, Achuthan P, AkanniW, AllenJ, AllenJ, Alvarez-JarretaJ, AmodeMR, ArmeanIM, AzovAG, Bennett R et al (2020) Ensembl 2020. Nucleic Acids Res 48:D682–D688

[85]

YuF, YanL, WangN, Yang S, WangL, TangY, GaoG, WangS, Ma C, XieR et al (2020a) Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin Infect Dis 71:793–798

[86]

YuP, QiF, XuY, LiF, LiuP, LiuJ, BaoL, DengW, GaoH, XiangZ et al (2020b) Age-related rhesus macaque models of COVID-19. Animal Model Exp Med 3:93–97

[87]

ZhangBZ, ChuH, HanS, ShuaiH, DengJ, Hu YF, GongHR, LeeAC, ZouZ, YauT et al (2020a) SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 30:928–931

[88]

ZhangC, ShiL, WangF-S (2020b) Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 5:428–430

[89]

ZhangL, ZhouL, BaoL, LiuJ, ZhuH, LvQ, LiuR, ChenW, TongW, Wei Q et al (2021) SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 6:337

[90]

ZhengYY, MaYT, ZhangJY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17:259–260

[91]

ZhouF, YuT, DuR, FanG, LiuY, LiuZ, XiangJ, Wang Y, SongB, GuX et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–1062

[92]

ZhuN, ZhangD, WangW, Li X, YangB, SongJ, ZhaoX, HuangB, Shi W, LuR et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733

[93]

ZieglerCGK, AllonSJ, NyquistSK, Mbano IM, MiaoVN, TzouanasCN, CaoY, YousifAS, Bals J, HauserBM et al (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181:1016–1035

RIGHTS & PERMISSIONS

The Author(s) 2022

AI Summary AI Mindmap
PDF (17523KB)

Supplementary files

PAC-0920-22081-YYG_suppl_1

PAC-0920-22081-YYG_suppl_10

PAC-0920-22081-YYG_suppl_11

PAC-0920-22081-YYG_suppl_12

PAC-0920-22081-YYG_suppl_13

PAC-0920-22081-YYG_suppl_14

PAC-0920-22081-YYG_suppl_15

PAC-0920-22081-YYG_suppl_2

PAC-0920-22081-YYG_suppl_3

PAC-0920-22081-YYG_suppl_4

PAC-0920-22081-YYG_suppl_5

PAC-0920-22081-YYG_suppl_6

PAC-0920-22081-YYG_suppl_7

PAC-0920-22081-YYG_suppl_8

PAC-0920-22081-YYG_suppl_9

916

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/