FTO stabilizes MIS12 and counteracts senescence
Sheng Zhang, Zeming Wu, Yue Shi, Si Wang, Jie Ren, Zihui Yu, Daoyuan Huang, Kaowen Yan, Yifang He, Xiaoqian Liu, Qianzhao Ji, Beibei Liu, Zunpeng Liu, Jing Qu, Guang-Hui Liu, Weimin Ci, Xiaoqun Wang, Weiqi Zhang
FTO stabilizes MIS12 and counteracts senescence
[1] |
Abe-KanohN, Kunisue N, MyojinT, ChinoA, Munemasa S, MurataY, SatohA, MoriyaH, NakamuraY (2019) Yeast screening system reveals the inhibitory mechanism of cancer cell proliferation by benzyl isothiocyanate through down-regulation of Mis12. Sci Rep 9:8866
CrossRef
Google scholar
|
[2] |
BiC, WangL, YuanB, Zhou X, LiY, WangS, PangY, GaoX, HuangY, LiM (2020) Long-read individual-molecule sequencing reveals CRISPR-induced genetic heterogeneity in human ESCs. Genome Biol 21:213
CrossRef
Google scholar
|
[3] |
DengK, ZhangZ, RenC, LiangY, GaoX, FanY, WangF (2021) FTO regulates myoblast proliferation by controlling CCND1 expression in an m(6)A-YTHDF2-dependent manner. Exp Cell Res 401:112524
CrossRef
Google scholar
|
[4] |
FischerJ, KochL, EmmerlingC, Vierkotten J, PetersT, BrüningJC, Rüther U (2009) Inactivation of the Fto gene protects from obesity. Nature 458:894–898
CrossRef
Google scholar
|
[5] |
HuangH, WengH, ChenJ (2020) m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37:270–288
CrossRef
Google scholar
|
[6] |
JiaG, FuY, ZhaoX, Dai Q, ZhengG, YangY, YiC, LindahlT, Pan T, YangYG et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887
CrossRef
Google scholar
|
[7] |
JiangZX, WangYN, LiZY, DaiZH, HeY, ChuK, GuJY, JiYX, SunNX, Yang F et al (2021) The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging. Cell Death Dis 12:744
CrossRef
Google scholar
|
[8] |
LiL, ZangL, ZhangF, Chen J, ShenH, ShuL, LiangF, Feng C, ChenD, TaoH et al (2017) Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 26:2398–2411
CrossRef
Google scholar
|
[9] |
LiW, ZouZ, CaiY, YangK, WangS, Liu Z, GengL, ChuQ, JiZ, ChanP et al (2022) Low-dose chloroquine treatment extends the lifespan of aged rats. Protein Cell.
CrossRef
Google scholar
|
[10] |
ShanH, GengL, JiangX, Song M, WangJ, LiuZ, ZhuoX, WuZ, HuJ, JiZ et al (2021) Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells. Protein Cell.
CrossRef
Google scholar
|
[11] |
SunH, LiK, ZhangX, Liu J, ZhangM, MengH, YiC (2021) m(6)Amseq reveals the dynamic m(6)Am methylation in the human transcriptome. Nat Commun 12:4778
CrossRef
Google scholar
|
[12] |
TaoB, HuangX, ShiJ, LiuJ, LiS, XuC, ZhongJ, Wan L, FengB, LiB (2020) FTO interacts with FOXO3a to enhance its transcriptional activity and inhibits aggression in gliomas. Signal Transduct Target Ther 5:130
CrossRef
Google scholar
|
[13] |
WeiJ, LiuF, LuZ, FeiQ, AiY, HePC, ShiH, CuiX, SuR, Klungland A et al (2018) Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 71:973–985.e975
CrossRef
Google scholar
|
[14] |
WeiC, LuoQ, WangB, Long Y, ZhangM, ShanW, YuX, XuY, QianP, HuangH (2021) Generation of a FTO gene knockout human embryonic stem cell line using CRISPR/Cas9 editing. Stem Cell Res 53:102362
CrossRef
Google scholar
|
[15] |
WuZ, ShiY, LuM, SongM, YuZ, WangJ, WangS, Ren J, YangYG, LiuGH et al (2020) METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res 48:11083–11096
CrossRef
Google scholar
|
/
〈 | 〉 |