Connecting past and present: single-cell lineage tracing
Cheng Chen, Yuanxin Liao, Guangdun Peng
Connecting past and present: single-cell lineage tracing
Central to the core principle of cell theory, depicting cells’ history, state and fate is a fundamental goal in modern biology. By leveraging clonal analysis and single-cell RNA-seq technologies, single-cell lineage tracing provides new opportunities to interrogate both cell states and lineage histories. During the past few years, many strategies to achieve lineage tracing at single-cell resolution have been developed, and three of them (integration barcodes, polylox barcodes, and CRISPR barcodes) are noteworthy as they are amenable in experimentally tractable systems. Although the above strategies have been demonstrated in animal development and stem cell research, much care and effort are still required to implement these methods. Here we review the development of single-cell lineage tracing, major characteristics of the cell barcoding strategies, applications, as well as technical considerations and limitations, providing a guide to choose or improve the single-cell barcoding lineage tracing.
single-cell lineage tracing / integration barcodes / polylox barcodes / CRISPR barcodes
[1] |
Adair JE, Enstrom MR (2021) A key toolbox for cellular barcoding analysis. Nat Comput Sci 1: 251- 252
CrossRef
Google scholar
|
[2] |
Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A (2018) Whole-organism clone tracing using single-cell sequencing. Nature 556: 108- 112
CrossRef
Google scholar
|
[3] |
Andrews TS, Kiselev VY, McCarthy D, Hemberg M (2021) Tutorial:guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc 16: 1- 9
CrossRef
Google scholar
|
[4] |
Baron CS, van Oudenaarden A (2019) Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat Rev Mol Cell Biol 20: 753- 765
CrossRef
Google scholar
|
[5] |
Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ (2020) Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol 38: 1408- 1414
CrossRef
Google scholar
|
[6] |
Biddy BA, Kong W, Kamimoto K, Guo C, Waye SE, Sun T, Morris SA (2018) Single-cell mapping of lineage and identity in direct reprogramming. Nature 564: 219- 224
CrossRef
Google scholar
|
[7] |
Bizzotto S, Dou Y, Ganz J, Doan RN, Kwon M, Bohrson CL, Kim SN, Bae T, Abyzov A, Network NBSM (2021) Landmarks of human embryonic development inscribed in somatic mutations. Science 371: 1249- 1253
CrossRef
Google scholar
|
[8] |
Blanpain C, Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14: 489- 502
CrossRef
Google scholar
|
[9] |
Bock C, Boutros M, Camp JG, Clarke L, Clevers H, Knoblich JA, Liberali P, Regev A, Rios AC, Stegle O et al (2021) The organoid cell atlas. Nat Biotechnol 39: 13- 17
CrossRef
Google scholar
|
[10] |
Bowling S, Sritharan D, Osorio FG, Nguyen M, Cheung P, Rodriguez-Fraticelli A, Patel S, Yuan WC, Fujiwara Y, Li BE, et al (2020) An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181 (6): 1410- 1422
CrossRef
Google scholar
|
[11] |
Bramlett C, Jiang D, Nogalska A, Eerdeng J, Contreras J, Lu R (2020) Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat Protoc 15: 1436- 1458
CrossRef
Google scholar
|
[12] |
Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW, Klein AM (2018) The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360: eaar5780
CrossRef
Google scholar
|
[13] |
Buckingham ME, Meilhac SM (2011) Tracing cells for tracking cell lineage and clonal behavior. Dev Cell 21: 394- 409
CrossRef
Google scholar
|
[14] |
Bystrykh LV, Belderbos ME (2016) Clonal analysis of cells with cellular barcoding: when numbers and sizes matter. Methods Mol Biol 1516: 57- 89
|
[15] |
Bystrykh LV, de Haan G, Verovskaya E (2014) Barcoded vector libraries and retroviral or lentiviral barcoding of hematopoietic stem cells. Methods Mol Biol 1185: 345- 360
|
[16] |
Camp JG, Treutlein B (2017) Human organomics: a fresh approach to understanding human development using single-cell transcriptomics. Development 144: 1584- 1587
CrossRef
Google scholar
|
[17] |
Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ et al (2019) The singlecell transcriptional landscape of mammalian organogenesis. Nature 566: 496- 502
CrossRef
Google scholar
|
[18] |
Chan MM, Smith ZD, Grosswendt S, Kretzmer H, Norman TM, Adamson B, Jost M, Quinn JJ, Yang D, Jones MG et al (2019) Molecular recording of mammalian embryogenesis. Nature 570: 77- 82
CrossRef
Google scholar
|
[19] |
Chow KK, Budde MW, Granados AA, Cabrera M, Yoon S, Cho S, Huang TH, Koulena N, Frieda K L, Cai L et al (2021) Imaging cell lineage with a synthetic digital recording system. Science 372: eabb3099
CrossRef
Google scholar
|
[20] |
Clarke R, Terry AR, Pennington H, Hasty C, MacDougall MS, Regan M, Merrill BJ (2020) Sequential activation of guide RNAs to enable successive CRISPR-Cas9 activities. Mol Cell 81 (2): 226- 238
|
[21] |
Cotterell J, Vila-Cejudo M, Batlle-Morera L, Sharpe J (2020) Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing. Development 147 (9): dev184481
CrossRef
Google scholar
|
[22] |
Denoth-Lippuner A, Jaeger BN, Liang T, Royall LN, Chie SE, Buthey K, Machado D, Korobeynyk VI, Kruse M, Munz CM et al (2021) Visualization of individual cell division history in complex tissues using iCOUNT. Cell Stem Cell 28 (11): 2020- 2034
CrossRef
Google scholar
|
[23] |
Drakhlis L, Biswanath S, Farr CM, Lupanow V, Teske J, Ritzenhoff K, Franke A, Manstein F, Bolesani E, Kempf H et al (2021) Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol 39: 737- 746
CrossRef
Google scholar
|
[24] |
Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A, Jasin M (2018) Inter-homologue repair in fertilized human eggs. Nature 560: E5- E7
CrossRef
Google scholar
|
[25] |
Eid A, Alshareef S, Mahfouz MM (2018) CRISPR base editors:genome editing without double-stranded breaks. Biochem J 475: 1955- 1964
CrossRef
Google scholar
|
[26] |
Espinosa-Medina
CrossRef
Google scholar
|
[27] |
Espinoza DA, Mortlock RD, Koelle SJ, Wu C, Dunbar CE (2021) Interrogation of clonal tracking data using barcodetrackR. Nat Comput Sci 1: 280- 289
CrossRef
Google scholar
|
[28] |
Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF (2018) Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360: eaar3131
CrossRef
Google scholar
|
[29] |
Feng J, DeWitt WS III, McKenna A, Simon N, Willis AD, Matsen FA IV (2021) Estimation of cell lineage trees by maximum-likelihood phylogenetics. Ann Appl Stat 15 (343-362): 320
|
[30] |
Figueres-Onate M, Sanchez-Gonzalez R, Lopez-Mascaraque L (2020) Deciphering neural heterogeneity through cell lineage tracing. Cell Mol Life Sci 78 (5): 1971- 1982
|
[31] |
Forrow A, Schiebinger G (2021) LineageOT is a unified framework for lineage tracing and trajectory inference. Nat Commun 12: 4940
CrossRef
Google scholar
|
[32] |
Frieda KL, Linton JM, Hormoz S, Choi J, Chow KK, Singer ZS, Budde MW, Elowitz MB, Cai L (2017) Synthetic recording and in situ readout of lineage information in single cells. Nature 541: 107- 111
CrossRef
Google scholar
|
[33] |
Garcia-Marques J, Yang CP, Espinosa-Medina I, Mok K, Koyama M, Lee T (2019) Unlimited genetic switches for cell-type-specific manipulation. Neuron 104: 227- 238 e227
CrossRef
Google scholar
|
[34] |
Garcia-Marques J, Espinosa-Medina I, Ku KY, Yang CP, Koyama M, Yu HH, Lee T (2020) A programmable sequence of reporters for lineage analysis. Nat Neurosci 23 (12): 1618- 1628
CrossRef
Google scholar
|
[35] |
Garrison BS, Yant SR, Mikkelsen JG, Kay MA (2007) Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol Cell Biol 27: 8824- 8833
CrossRef
Google scholar
|
[36] |
Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E, Broekhuis MJ, de Haan G, Bystrykh LV (2010) Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115: 2610- 2618
CrossRef
Google scholar
|
[37] |
Girskis K, Woodworth M (2016) Genetic Techniques for cell lineage tracing in the nervous system. Short Course 31.
|
[38] |
Gong W, Granados AA, Hu J, Jones MG, Raz O, Salvador-Martinez I, Zhang H, Chow KK, Kwak IY, Retkute R et al (2021) Benchmarked approaches for reconstruction of in vitro cell lineages and in silico models of C. elegans and M. musculus developmental trees. Cell Syst 12 (8): 810- 826
CrossRef
Google scholar
|
[39] |
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24: 927- 930
CrossRef
Google scholar
|
[40] |
Han X, Chen H, Huang D, Chen H, Fei L, Cheng C, Huang H, Yuan GC, Guo G (2018) Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing. Genome Biol 19: 47
CrossRef
Google scholar
|
[41] |
He J, Zhang G, Almeida AD, Cayouette M, Simons BD, Harris WA (2012) How variable clones build an invariant retina. Neuron 75: 786- 798
CrossRef
Google scholar
|
[42] |
He Z, Maynard A, Jain A, Gerber T, Petri R, Lin HC, Santel M, Ly K, Dupre JS, Sidow L et al (2022) Lineage recording in human cerebral organoids. Nat Methods 19: 90- 99
CrossRef
Google scholar
|
[43] |
Hofbauer P, Jahnel SM, Mendjan S (2021a) In vitro models of the human heart. Development 148 (16): dev199672
CrossRef
Google scholar
|
[44] |
Hofbauer P, Jahnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, Penc M, Tavernini K, Grdseloff N, Meledeth C, et al (2021b) Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184: 3299- 3317 e3222
CrossRef
Google scholar
|
[45] |
Hsu YC (2015) Theory and practice of lineage tracing. Stem Cells 33: 3197- 3204
CrossRef
Google scholar
|
[46] |
Huang Q, Garrett A, Bose S, Blocker S, Rios AC, Clevers H, Shen X (2021) The frontier of live tissue imaging across space and time. Cell Stem Cell 28: 603- 622
CrossRef
Google scholar
|
[47] |
Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50: 96
|
[48] |
Hwang B, Lee W, Yum SY, Jeon Y, Cho N, Jang G, Bang D (2019) Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements. Nat Commun 10: 1234
CrossRef
Google scholar
|
[49] |
Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C et al (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24: 939- 946
CrossRef
Google scholar
|
[50] |
Jones MG, Khodaverdian A, Quinn JJ, Chan MM, Hussmann JA, Wang R, Xu C, Weissman JS, Yosef N (2020) Inference of singlecell phylogenies from lineage tracing data using Cassiopeia. Genome Biol 21: 92
CrossRef
Google scholar
|
[51] |
Kalhor K, Church GM (2019) Single-cell CRISPR-based lineage tracing in mice. Biochemistry 58: 4775- 4776
CrossRef
Google scholar
|
[52] |
Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P, Church GM (2018) Developmental barcoding of whole mouse via homing CRISPR. Science 361.
|
[53] |
Kebschull JM, Zador AM (2018) Cellular barcoding: lineage tracing, screening and beyond. Nat Methods 15: 871- 879
CrossRef
Google scholar
|
[54] |
Kester L, van Oudenaarden A (2018) Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23: 166- 179
CrossRef
Google scholar
|
[55] |
Kim IS, Wu J, Rahme GJ, Battaglia S, Dixit A, Gaskell E, Chen H, Pinello L, Bernstein BE (2020) Parallel single-cell RNA-Seq and genetic recording reveals lineage decisions in developing embryoid bodies. Cell Rep 33: 108222
CrossRef
Google scholar
|
[56] |
Klein AM, Simons BD (2011) Universal patterns of stem cell fate in cycling adult tissues. Development 138: 3103- 3111
CrossRef
Google scholar
|
[57] |
Klein AM, Nakagawa T, Ichikawa R, Yoshida S, Simons BD (2010) Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell 7: 214- 224
CrossRef
Google scholar
|
[58] |
Kong W, Biddy BA, Kamimoto K, Amrute JM, Butka EG, Morris SA (2020) Cell tagging: combinatorial indexing to simultaneously map lineage and identity at single-cell resolution. Nat Protoc 15: 750- 772
CrossRef
Google scholar
|
[59] |
Kwon GS, Viotti M, Hadjantonakis AK (2008) The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev Cell 15: 509- 520
CrossRef
Google scholar
|
[60] |
La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lonnerberg P, Furlan A et al (2018) RNA velocity of single cells. Nature 560: 494- 498
CrossRef
Google scholar
|
[61] |
Lafzi A, Moutinho C, Picelli S, Heyn H (2018) Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 13: 2742- 2757
CrossRef
Google scholar
|
[62] |
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501: 373- 379
CrossRef
Google scholar
|
[63] |
Lareau CA, Ludwig LS, Muus C, Gohil SH, Zhao T, Chiang Z, Pelka K, Verboon JM, Luo W, Christian E et al (2021) Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol 39: 451- 461
CrossRef
Google scholar
|
[64] |
Lederer AR, La Manno G (2020) The emergence and promise of single-cell temporal-omics approaches. Curr Opin Biotechnol 63: 70- 78
CrossRef
Google scholar
|
[65] |
Liu K, Deng S, Ye C, Yao Z, Wang J, Gong H, Liu L, He X (2021) Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat Methods 18: 1506- 1514
CrossRef
Google scholar
|
[66] |
Liu K, Jin H, Zhou B (2020) Genetic lineage tracing with multiple DNA recombinases: a user’s guide for conducting more precise cell fate mapping studies. J Biol Chem 295: 6413- 6424
CrossRef
Google scholar
|
[67] |
Lu R, Neff NF, Quake SR, Weissman IL (2011) Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol 29: 928- 933
CrossRef
Google scholar
|
[68] |
Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, Pelka K, Ge W, Oren Y, Brack A, et al (2019) Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176: 1325- 1339 e1322
CrossRef
Google scholar
|
[69] |
MacLean AL, Lo Celso C, Stumpf MP (2017) Concise review: stem cell population biology: insights from hematopoiesis. Stem Cells 35: 80- 88
CrossRef
Google scholar
|
[70] |
Marx V (2021) Method of the year: spatially resolved transcriptomics. Nat Methods 18: 9- 14
CrossRef
Google scholar
|
[71] |
McKenna A, Gagnon JA (2019) Recording development with single cell dynamic lineage tracing. Development 146 (12): dev169730
CrossRef
Google scholar
|
[72] |
McKenna A, Findlay GM, Gagnon JA, Horwitz M S, Schier AF, Shendure J (2016) Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353: aaf7907
CrossRef
Google scholar
|
[73] |
Mittnenzweig M, Mayshar Y, Cheng S, Ben-Yair R, Hadas R, Rais Y, Chomsky E, Reines N, Uzonyi A, Lumerman L, et al (2021) A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell 184: 2825- 2842 e2822
CrossRef
Google scholar
|
[74] |
Naik SH, Schumacher TN, Perie L (2014) Cellular barcoding: a technical appraisal. Exp Hematol 42: 598- 608
CrossRef
Google scholar
|
[75] |
Packer JS, Zhu Q, Huynh C, Sivaramakrishnan P, Preston E, Dueck H, Stefanik D, Tan K, Trapnell C, Kim J et al (2019) A lineageresolved molecular atlas of C. elegans embryogenesis at singlecell resolution. Science 365: eaax1971
CrossRef
Google scholar
|
[76] |
Papapetrou EP, Schambach A (2016) Gene insertion into genomic safe harbors for human gene therapy. Mol Ther 24: 678- 684
CrossRef
Google scholar
|
[77] |
Pei W, Feyerabend TB, Rossler J, Wang X, Postrach D, Busch K, Rode I, Klapproth K, Dietlein N, Quedenau C et al (2017) Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548: 456- 460
CrossRef
Google scholar
|
[78] |
Pei W, Wang X, Rossler J, Feyerabend TB, Hofer T, Rodewald HR (2019) Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice. Nat Protoc 14: 1820- 1840
CrossRef
Google scholar
|
[79] |
Pei W, Shang F, Wang X, Fanti AK, Greco A, Busch K, Klapproth K, Zhang Q, Quedenau C, Sauer S et al (2020) Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by polyloxexpress barcoding. Cell Stem Cell 27 (3): 383- 395
CrossRef
Google scholar
|
[80] |
Peikon ID, Gizatullina DI, Zador AM (2014) In vivo generation of DNA sequence diversity for cellular barcoding. Nucleic Acids Res 42: e127
CrossRef
Google scholar
|
[81] |
Peng G, Suo S, Cui G, Yu F, Wang R, Chen J, Chen S, Liu Z, Chen G, Qian Y et al (2019) Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature 572: 528- 532
CrossRef
Google scholar
|
[82] |
Peng G, Cui G, Ke J, Jing N (2020) Using single-cell and spatial transcriptomes to understand stem cell lineage specification during early embryo development. Annu Rev Genomics Hum Genet 21: 163- 181
CrossRef
Google scholar
|
[83] |
Petit AC, Legue E, Nicolas JF (2005) Methods in clonal analysis and applications. Reprod Nutr Dev 45: 321- 339
CrossRef
Google scholar
|
[84] |
Pijuan-Sala B, Griffiths JA, Guibentif C, Hiscock TW, Jawaid W, Calero-Nieto FJ, Mulas C, Ibarra-Soria X, Tyser RCV, Ho DLL et al (2019) A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566: 490- 495
CrossRef
Google scholar
|
[85] |
Potter SS (2018) Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol 14: 479- 492
CrossRef
Google scholar
|
[86] |
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14: 979- 982
CrossRef
Google scholar
|
[87] |
Quinn JJ, Jones MG, Okimoto RA, Nanjo S, Chan MM, Yosef N, Bivona TG, Weissman JS (2021) Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science eabc1944.
|
[88] |
Raj B, Wagner DE, McKenna A, Pandey S, Klein AM, Shendure J, Gagnon JA, Schier AF (2018) Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat Biotechnol 36: 442- 450
CrossRef
Google scholar
|
[89] |
Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19: 770- 788
CrossRef
Google scholar
|
[90] |
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M et al (2017) The human cell atlas. Elife 6: e27041
CrossRef
Google scholar
|
[91] |
Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, Jankovic M, Sun J, Calogero RA, Klein AM, Camargo FD (2018) Clonal analysis of lineage fate in native haematopoiesis. Nature 553: 212- 216
CrossRef
Google scholar
|
[92] |
Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, Klein AM, Lowell S, Camargo FD (2020) Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583: 585- 589
CrossRef
Google scholar
|
[93] |
Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W et al (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360: 176- 182
CrossRef
Google scholar
|
[94] |
Rossi G, Broguiere N, Miyamoto M, Boni A, Guiet R, Girgin M, Kelly RG, Kwon C, Lutolf MP (2021) Capturing cardiogenesis in gastruloids. Cell Stem Cell 28: 230- 240 e236
CrossRef
Google scholar
|
[95] |
Saelens W, Cannoodt R, Todorov H, Saeys Y (2019) A comparison of single-cell trajectory inference methods. Nat Biotechnol 37: 547- 554
CrossRef
Google scholar
|
[96] |
Sagner A, Briscoe J (2019) Establishing neuronal diversity in the spinal cord: a time and a place. Development 146 (22): dev182154
CrossRef
Google scholar
|
[97] |
Salvador-Martinez I, Grillo M, Averof M, Telford MJ (2019) Is it possible to reconstruct an accurate cell lineage using CRISPR recorders? Elife 8: e40292
CrossRef
Google scholar
|
[98] |
Semrau S, Goldmann JE, Soumillon M, Mikkelsen TS, Jaenisch R, van Oudenaarden A (2017) Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat Commun 8: 1096
CrossRef
Google scholar
|
[99] |
Sivasubbu S, Balciunas D, Amsterdam A, Ekker SC (2007) Insertional mutagenesis strategies in zebrafish. Genome Biol 8: S9
CrossRef
Google scholar
|
[100] |
Smith T, Heger A, Sudbery I (2017) UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res 27: 491- 499
CrossRef
Google scholar
|
[101] |
Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N, Junker JP (2018) Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol 36: 469- 473
CrossRef
Google scholar
|
[102] |
Spencer Chapman M, Ranzoni AM, Myers B, Williams N, Coorens THH, Mitchell E, Butler T, Dawson KJ, Hooks Y, Moore L et al (2021) Lineage tracing of human development through somatic mutations. Nature 595 (7865): 85- 90
CrossRef
Google scholar
|
[103] |
Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100: 64- 119
CrossRef
Google scholar
|
[104] |
Svensson V, Pachter L (2018) RNA velocity: molecular kinetics from single-cell RNA-Seq. Mol Cell 72: 7- 9
CrossRef
Google scholar
|
[105] |
Svensson V, Vento-Tormo R, Teichmann SA (2018) Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13: 599- 604
CrossRef
Google scholar
|
[106] |
Tam PPL, Ho JWK (2020) Cellular diversity and lineage trajectory:insights from mouse single cell transcriptomes. Development 147 (2): dev179788
CrossRef
Google scholar
|
[107] |
Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to mechanism. Nature 541: 331- 338
CrossRef
Google scholar
|
[108] |
Thielecke L, Cornils K, Glauche I (2020) genBaRcode: a comprehensive R-package for genetic barcode analysis. Bioinformatics 36: 2189- 2194
CrossRef
Google scholar
|
[109] |
Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M et al (2016) Dissecting direct reprogramming from fibroblast to neuron using single-cell RNAseq. Nature 534: 391- 395
CrossRef
Google scholar
|
[110] |
Trinh le A, and Fraser, S E, (2013) Enhancer and gene traps for molecular imaging and genetic analysis in zebrafish. Dev Growth Differ 55: 434- 445
CrossRef
Google scholar
|
[111] |
Tritschler S, Buttner M, Fischer DS, Lange M, Bergen V, Lickert H, Theis FJ (2019) Concepts and limitations for learning developmental trajectories from single cell genomics. Development 146 (12): dev170506
CrossRef
Google scholar
|
[112] |
Van den Berge K, Roux de Bezieux H, Street K, Saelens W, Cannoodt R, Saeys Y, Dudoit S, Clement L (2020) Trajectorybased differential expression analysis for single-cell sequencing data. Nat Commun 11: 1201
CrossRef
Google scholar
|
[113] |
VanHorn S, Morris SA (2020) Next-generation lineage tracing and fate mapping to interrogate development. Dev Cell 56 (1): 7- 21
|
[114] |
Wagner DE, Klein AM (2020) Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet 21 (7): 410- 427
CrossRef
Google scholar
|
[115] |
Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM (2018) Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360: 981- 987
CrossRef
Google scholar
|
[116] |
Wasserstrom A, Frumkin D, Adar R, Itzkovitz S, Stern T, Kaplan S, Shefer G, Shur I, Zangi L, Reizel Y, et al (2008) Estimating cell depth from somatic mutations. PLoS Comput Biol 4: e1000058
CrossRef
Google scholar
|
[117] |
Weber TS, Dukes M, Miles DC, Glaser SP, Naik SH, Duffy KR (2016) Site-specific recombinatorics: in situ cellular barcoding with the Cre Lox system. BMC Syst Biol 10: 43
CrossRef
Google scholar
|
[118] |
Weinreb C, Klein AM (2020) Lineage reconstruction from clonal correlations. Proc Natl Acad Sci USA 117: 17041- 17048
CrossRef
Google scholar
|
[119] |
Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM (2020) Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367: eaaw3381
CrossRef
Google scholar
|
[120] |
Weissman TA, Pan YA (2015) Brainbow: new resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics 199: 293- 306
CrossRef
Google scholar
|
[121] |
Willnow D, Benary U, Margineanu A, Vignola ML, Konrath F, Pongrac IM, Karimaddini Z, Vigilante A, Wolf J, Spagnoli FM (2021) Quantitative lineage analysis identifies a hepato-pancreato-biliary progenitor niche. Nature 597: 87- 91
CrossRef
Google scholar
|
[122] |
Woodworth MB, Girskis KM, Walsh CA (2017) Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat Rev Genet 18: 230- 244
CrossRef
Google scholar
|
[123] |
Wu Y, Zhang K (2020) Tools for the analysis of high-dimensional single-cell RNA sequencing data. Nat Rev Nephrol 16: 408- 421
|
[124] |
Wu SS, Lee JH, Koo BK (2019) Lineage tracing: computational reconstruction goes beyond the limit of imaging. Mol Cells 42: 104- 112
|
[125] |
Ye C, Chen Z, Liu Z, Wang F, He X (2020) Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish. J Genet Genomics 47: 85- 91
CrossRef
Google scholar
|
[126] |
Zafar H, Lin C, Bar-Joseph Z (2020) Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data. Nat Commun 11: 3055
CrossRef
Google scholar
|
[127] |
Zechner C, Nerli E, Norden C (2020) Stochasticity and determinism in cell fate decisions. Development 147 (14): dev181495
CrossRef
Google scholar
|
[128] |
Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, Zhang H, Li L, Sun L, Pan N et al (2018) A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555: 524- 528
CrossRef
Google scholar
|
/
〈 | 〉 |