BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding

Mingzhu Wang, Kun Zhao, Meng Liu, Mengting Wang, Zhibin Qiao, Shanru Yi, Yonghua Jiang, Xiaochen Kou, Yanhong Zhao, Jiqing Yin, Tianming Li, Hong Wang, Cizhong Jiang, Shaorong Gao, Jiayu Chen

PDF(4833 KB)
PDF(4833 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (8) : 580-601. DOI: 10.1007/s13238-021-00896-x
RESEARCH ARTICLE
RESEARCH ARTICLE

BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding

Author information +
History +

Abstract

Chemically defined medium is widely used for culturing mouse embryonic stem cells (mESCs), in which N2B27 works as a substitution for serum, and GSK3β and MEK inhibitors (2i) help to promote ground-state pluripotency. However, recent studies suggested that MEKi might cause irreversible defects that compromise the developmental potential of mESCs. Here, we demonstrated the deficient bone morphogenetic protein (BMP) signal in the chemically defined condition is one of the main causes for the impaired pluripotency. Mechanistically, activating the BMP signal pathway by BMP4 could safeguard the chromosomal integrity and proliferation capacity of mESCs through regulating downstream targets Ube2s and Chmp4b. More importantly, BMP4 promotes a distinct in vivo developmental potential and a long-term pluripotency preservation. Besides, the pluripotent improvements driven by BMP4 are superior to those by attenuating MEK suppression. Taken together, our study shows appropriate activation of BMP signal is essential for regulating functional pluripotency and reveals that BMP4 should be applied in the serumfree culture system.

Keywords

BMP4 / pluripotency / chromosomal integrity / developmental potential / serum-free

Cite this article

Download citation ▾
Mingzhu Wang, Kun Zhao, Meng Liu, Mengting Wang, Zhibin Qiao, Shanru Yi, Yonghua Jiang, Xiaochen Kou, Yanhong Zhao, Jiqing Yin, Tianming Li, Hong Wang, Cizhong Jiang, Shaorong Gao, Jiayu Chen. BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding. Protein Cell, 2022, 13(8): 580‒601 https://doi.org/10.1007/s13238-021-00896-x

References

[1]
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al ( 2000) Gene ontology: tool for the unification of biology. the Gene Ontology Consortium. Nat Genet 25: 25- 29
CrossRef Google scholar
[2]
Baker H, DeAngelis B, Frank O ( 1988) Vitamins and other metabolites in various sera commonly used for cell culturing. Experientia 44: 1007- 1010
CrossRef Google scholar
[3]
Ben-David U, Arad G, Weissbein U, Mandefro B, Maimon A, GolanLev T, Narwani K, Clark AT, Andrews PW, Benvenisty N et al ( 2014) Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun 5: 4825
CrossRef Google scholar
[4]
Boward B, Wu T, Dalton S ( 2016) Concise review: Control of cell fate through cell cycle and pluripotency networks. Stem Cells 34: 1427- 1436
CrossRef Google scholar
[5]
Bradley A, Evans M, Kaufman MH, Robertson E ( 1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255- 256
CrossRef Google scholar
[6]
Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A ( 2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135: 1287- 1298
CrossRef Google scholar
[7]
Chen H, Guo R, Zhang Q, Guo H, Yang M, Wu Z, Gao S, Liu L, Chen L ( 2015a) Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proc Natl Acad Sci U S A 112: E5936- E5943
CrossRef Google scholar
[8]
Chen J, Gao Y, Huang H, Xu K, Chen X, Jiang Y, Li H, Gao S, Tao Y, Wang H et al ( 2015b) The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells. Stem Cells 33: 686- 698
CrossRef Google scholar
[9]
Choi J, Huebner AJ, Clement K, Walsh RM, Savol A, Lin K, Gu H, Di Stefano B, Brumbaugh J, Kim SY et al ( 2017) Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548: 219- 223
CrossRef Google scholar
[10]
Czechanski A, Byers C, Greenstein I, Schrode N, Donahue LR, Hadjantonakis AK, Reinholdt LG ( 2014) Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc 9: 559- 574
CrossRef Google scholar
[11]
Di Stefano B, Ueda M, Sabri S, Brumbaugh J, Huebner AJ, Sahakyan A, Clement K, Clowers KJ, Erickson AR, Shioda K et al ( 2018) Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods 15: 732- 740
CrossRef Google scholar
[12]
Evans MJ, Kaufman MH ( 1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154- 156
CrossRef Google scholar
[13]
Gardner RL ( 1998) Contributions of blastocyst micromanipulation to the study of mammalian development. BioEssays 20: 168- 180
CrossRef Google scholar
[14]
Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopina J, Chen PY, Clark AT ( 2015) DNA demethylation dynamics in the human prenatal germline. Cell 161: 1425- 1436
CrossRef Google scholar
[15]
Gonzales KA, Liang H, Lim YS, Chan YS, Yeo JC, Tan CP, Gao B, Le B, Tan ZY, Low KY et al ( 2015) Deterministic restriction on pluripotent state dissolution by cell-cycle pathways. Cell 162: 564- 579
CrossRef Google scholar
[16]
Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X, Wei Y et al ( 2015) The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161: 1437- 1452
CrossRef Google scholar
[17]
Guo R, Ye X, Yang J, Zhou Z, Tian C, Wang H, Wang H, Fu H, Liu C, Zeng M et al ( 2018) Feeders facilitate telomere maintenance and chromosomal stability of embryonic stem cells. Nat Commun 9: 2620
CrossRef Google scholar
[18]
Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HH, Matarese F, Lepikhov K, Gut M, Brun-Heath I, Hubner NC et al ( 2013) Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13: 360- 369
CrossRef Google scholar
[19]
Hackett JA, Surani MA ( 2014) Regulatory principles of pluripotency:from the ground state up. Cell Stem Cell 15: 416- 430
CrossRef Google scholar
[20]
Halliwell B ( 1988) Albumin—an important extracellular antioxidant? Biochem Pharmacol 37: 569- 571
CrossRef Google scholar
[21]
Hassani SN, Totonchi M, Sharifi-Zarchi A, Mollamohammadi S, Pakzad M, Moradi S, Samadian A, Masoudi N, Mirshahvaladi S, Farrokhi A et al ( 2014) Inhibition of TGFbeta signaling promotes ground state pluripotency. Stem Cell Rev Rep 10: 16- 30
CrossRef Google scholar
[22]
Hayashi K, de Sousa Lopes SMC, Tang F, Lao K, Surani MA ( 2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3: 391- 401
CrossRef Google scholar
[23]
He Z, Li JJ, Zhen CH, Feng LY, Ding XY ( 2006) Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation. Acta Pharmacol Sin 27: 80- 90
CrossRef Google scholar
[24]
He W, Zhang X, Zhang Y, Zheng W, Xiong Z, Hu X, Wang M, Zhang L, Zhao K, Qiao Z et al ( 2018) Reduced self-diploidization and improved survival of semi-cloned mice produced from androgenetic haploid embryonic stem cells through overexpression of Dnmt3b. Stem Cell Rep 10: 477- 493
CrossRef Google scholar
[25]
Hirai H, Karian P, Kikyo N ( 2011) Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem J 438: 11- 23
CrossRef Google scholar
[26]
Kim HJ, Shin J, Lee S, Kim TW, Jang H, Suh MY, Kim JH, Hwang IY, Hwang DS, Cho EJ et al ( 2018) Cyclin-dependent kinase 1 activity coordinates the chromatin associated state of Oct4 during cell cycle in embryonic stem cells. Nucleic Acids Res 46: 6544- 6560
CrossRef Google scholar
[27]
Kolodziejczyk AA, Kim JK, Tsang JC, Ilicic T, Henriksson J, Natarajan KN, Tuck AC, Gao X, Buhler M, Liu P et al ( 2015) Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17: 471- 485
CrossRef Google scholar
[28]
Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A ( 2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from selfrenewal to lineage commitment. Development 134: 2895- 2902
CrossRef Google scholar
[29]
Le R, Huang Y, Zhang Y, Wang H, Lin J, Dong Y, Li Z, Guo M, Kou X, Zhao Y et al ( 2021) Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells. Cell Stem Cell 28: 732- 747e739
CrossRef Google scholar
[30]
Lee J, Matsuzawa A, Shiura H, Sutani A, Ishino F ( 2018) Preferable in vitro condition for maintaining faithful DNA methylation imprinting in mouse embryonic stem cells. Genes Cells 23: 146- 160
CrossRef Google scholar
[31]
Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T, Grabole N, Mansfield W, Nashun B, Knezovich JG, Smith A et al ( 2013) Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20: 311- 316
CrossRef Google scholar
[32]
Martin GR ( 1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78: 7634- 7638
CrossRef Google scholar
[33]
Morikawa M, Koinuma D, Mizutani A, Kawasaki N, Holmborn K, Sundqvist A, Tsutsumi S, Watabe T, Aburatani H, Heldin CH et al ( 2016) BMP sustains embryonic stem cell self-renewal through distinct functions of different Kruppel-like factors. Stem Cell Rep 6: 64- 73
CrossRef Google scholar
[34]
Nichols J, Smith A ( 2009) Naive and primed pluripotent states. Cell Stem Cell 4: 487- 492
CrossRef Google scholar
[35]
Ogawa K, Matsui H, Ohtsuka S, Niwa H ( 2004) A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells 9: 471- 477
CrossRef Google scholar
[36]
Pauklin S, Vallier L ( 2014) The cell-cycle state of stem cells determines cell fate propensity. Cell 156: 1338
CrossRef Google scholar
[37]
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J ( 2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47: W191- W198
CrossRef Google scholar
[38]
Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH ( 2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10: 55- 63
CrossRef Google scholar
[39]
Sheaffer KL, Elliott EN, Kaestner KH ( 2016) DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res (phila) 9: 534- 546
CrossRef Google scholar
[40]
Shimizu T, Ueda J, Ho JC, Iwasaki K, Poellinger L, Harada I, Sawada Y ( 2012) Dual inhibition of Src and GSK3 maintains mouse embryonic stem cells, whose differentiation is mechanically regulated by Src signaling. Stem Cells 30: 1394- 1404
CrossRef Google scholar
[41]
Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A ( 2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484: 339- 344
CrossRef Google scholar
[42]
Tam PP, Rossant J ( 2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130: 6155- 6163
CrossRef Google scholar
[43]
Tang WW, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, Hackett JA, Chinnery PF, Surani MA ( 2015) A unique gene regulatory network resets the human germline epigenome for development. Cell 161: 1453- 1467
CrossRef Google scholar
[44]
Ter Huurne M, Chappell J, Dalton S, Stunnenberg HG ( 2017) Distinct cell-cycle control in two different states of mouse pluripotency. Cell Stem Cell 21: 449- 455e444
CrossRef Google scholar
[45]
Uddin S, Melnyk N, Foster DA ( 2020) Albumin promotes the progression of fibroblasts through late G1 into S-phase in the absence of growth factors. Cell Cycle 19: 2158- 2167
CrossRef Google scholar
[46]
Wang J, Zhang Y, Hou J, Qian X, Zhang H, Zhang Z, Li M, Wang R, Liao K, Wang Y et al ( 2016) Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ 23: 393- 404
CrossRef Google scholar
[47]
Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J et al ( 2018) Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 20: 620- 631
CrossRef Google scholar
[48]
Wu B, Li L, Li B, Gao J, Chen Y, Wei M, Yang Z, Zhang B, Li S, Li K et al ( 2020) Activin A and BMP4 signaling expands potency of mouse embryonic stem cells in serum-free media. Stem Cell Rep 14: 241- 255
CrossRef Google scholar
[49]
Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R et al ( 2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3: 196- 206
CrossRef Google scholar
[50]
Yagi M, Kishigami S, Tanaka A, Semi K, Mizutani E, Wakayama S, Wakayama T, Yamamoto T, Yamada Y ( 2017) Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548: 224- 227
CrossRef Google scholar
[51]
Ying QL, Nichols J, Chambers I, Smith A ( 2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115: 281- 292
CrossRef Google scholar
[52]
Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A ( 2008) The ground state of embryonic stem cell self-renewal. Nature 453: 519- 523
CrossRef Google scholar
[53]
Yu S, Zhou C, Cao S, He J, Cai B, Wu K, Qin Y, Huang X, Xiao L, Ye J et al ( 2020) BMP4 resets mouse epiblast stem cells to naive pluripotency through ZBTB7A/B-mediated chromatin remodelling. Nat Cell Biol 22: 651- 662
CrossRef Google scholar
[54]
Zhang M, Cheng L, Jia Y, Liu G, Li C, Song S, Bradley A, Huang Y ( 2016) Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential. EMBO J 35: 2285- 2300
CrossRef Google scholar
[55]
Zhang W, Chen Y, Yang J, Zhang J, Yu J, Wang M, Zhao X, Wei K, Wan X, Xu X et al ( 2020) A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated genome editing. Elife 9: e56008
CrossRef Google scholar
[56]
Zheng X, Baker H, Hancock WS, Fawaz F, McCaman M, Pungor E Jr ( 2006) Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol Prog 22: 1294- 1300
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s)
AI Summary AI Mindmap
PDF(4833 KB)

Accesses

Citations

Detail

Sections
Recommended

/