Drug target inference by mining transcriptional data using a novel graph convolutional network framework

Feisheng Zhong, Xiaolong Wu, Ruirui Yang, Xutong Li, Dingyan Wang, Zunyun Fu, Xiaohong Liu, XiaoZhe Wan, Tianbiao Yang, Zisheng Fan, Yinghui Zhang, Xiaomin Luo, Kaixian Chen, Sulin Zhang, Hualiang Jiang, Mingyue Zheng

PDF(3151 KB)
PDF(3151 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (4) : 281-301. DOI: 10.1007/s13238-021-00885-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Drug target inference by mining transcriptional data using a novel graph convolutional network framework

Author information +
History +

Abstract

A fundamental challenge that arises in biomedicine is the need to characterize compounds in a relevant cellular context in order to reveal potential on-target or offtarget effects. Recently, the fast accumulation of gene transcriptional profiling data provides us an unprecedented opportunity to explore the protein targets of chemical compounds from the perspective of cell transcriptomics and RNA biology. Here, we propose a novel Siamese spectral-based graph convolutional network (SSGCN) model for inferring the protein targets of chemical compounds from gene transcriptional profiles. Although the gene signature of a compound perturbation only provides indirect clues of the interacting targets, and the biological networks under different experiment conditions further complicate the situation, the SSGCN model was successfully trained to learn from known compound-target pairs by uncovering the hidden correlations between compound perturbation profiles and gene knockdown profiles. On a benchmark set and a large time-split validation dataset, the model achieved higher target inference accuracy as compared to previous methods such as Connectivity Map. Further experimental validations of prediction results highlight the practical usefulness of SSGCN in either inferring the interacting targets of compound, or reversely, in finding novel inhibitors of a given target of interest.

Keywords

drug target inference / transcriptomics / deep learning / experimental verification

Cite this article

Download citation ▾
Feisheng Zhong, Xiaolong Wu, Ruirui Yang, Xutong Li, Dingyan Wang, Zunyun Fu, Xiaohong Liu, XiaoZhe Wan, Tianbiao Yang, Zisheng Fan, Yinghui Zhang, Xiaomin Luo, Kaixian Chen, Sulin Zhang, Hualiang Jiang, Mingyue Zheng. Drug target inference by mining transcriptional data using a novel graph convolutional network framework. Protein Cell, 2022, 13(4): 281‒301 https://doi.org/10.1007/s13238-021-00885-0

References

[1]
Abbas AK, Trotta E, Simeonov DR, Marson A, Bluestone JA (2018) Revisiting IL-2: biology and therapeutic prospects. Sci Immunol 3: eaat1482.
CrossRef Google scholar
[2]
André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. New Engl J Med. 380: 1929- 1940
CrossRef Google scholar
[3]
Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology:challenges and opportunities in drug discovery. J Med Chem 57: 7874- 7887
CrossRef Google scholar
[4]
Arshad U, Pertinez H, Box H, Tatham L, Rajoli RKR, Curley P, Neary M, Sharp J, Liptrott NJ, Valentijn A et al (2020) Prioritization of anti-SARS-Cov-2 drug repurposing opportunities based on plasma and target site concentrations derived from their established human pharmacokinetics. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.1909
[5]
Ashburn TT, Thor KB (2004) Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3: 673- 683
CrossRef Google scholar
[6]
Bajorath J (2014) Evolution of the activity cliff concept for structureactivity relationship analysis and drug discovery. Future Med Chem 6: 1545- 1549
CrossRef Google scholar
[7]
Behm VY, Blumberg J, Bush C, Grover R, Minich D, Newton R, Perlmutter D, Reed D, Sinatra S, Stroka M (2020) Personalized nutrition & the COVID-19 Era. https://theana.org/COVID-19
[8]
Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ (2005a) Chemogenomic profiling on a genomewide scale using reverseengineered gene networks. Nat Biotechnol 23: 377- 383
CrossRef Google scholar
[9]
Braaten D, Luban J (2001) Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO J 20: 1300- 1309
CrossRef Google scholar
[10]
Bruna J (2014) Spectral networks and deep locally connected networks on graphs. https://arxiv.org/abs/1312.6203.
[11]
Carozza JA, Böhnert V, Nguyen KC, Skariah G, Shaw KE, Brown JA, Rafat M, von Eyben R, Graves EE, Glenn JS et al (2020) Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anticancer immunity. Nat Cancer 1: 184- 196
CrossRef Google scholar
[12]
Cavagna L, Seminari E, Zanframundo G, Gregorini M, Di Matteo A, Rampino T, Montecucco C, Pelenghi S, Cattadori B, Pattonieri EF et al (2020) Calcineurin inhibitor-based immunosuppression and COVID-19: results from a multidisciplinary cohort of patients in Northern Italy. Microorganisms 8: 977
CrossRef Google scholar
[13]
Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Pujadas G, Garcia-Vallve S (2015) Tools for in silico target fishing. Methods 71: 98- 103
CrossRef Google scholar
[14]
Chua HN, Roth FP (2011) Discovering the targets of drugs via computational systems biology. J Biol Chem 286: 23653- 23658
CrossRef Google scholar
[15]
Cimmperman P, Baranauskiene L, Jachimoviciūte S, Jachno J, Torresan J, Michailoviene V, Matuliene J, Sereikaite J, Bumelis V, Matulis D (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95: 3222- 3231
CrossRef Google scholar
[16]
Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo SR, Lemmens E, Banda T, Leong JJ et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11: 1018- 1030
CrossRef Google scholar
[17]
Cosgrove EJ, Zhou Y, Gardner TS, Kolaczyk ED (2008) Predicting gene targets of perturbations via network-based filtering of mRNA expression compendia. Bioinformatics 24: 2482- 2490
CrossRef Google scholar
[18]
Dawar FU, Xiong Y, Khattak MNK, Li J, Lin L, Mei J (2017) Potential role of cyclophilin A in regulating cytokine secretion. J Leukoc Biol 102: 989- 992
CrossRef Google scholar
[19]
Enache OM, Lahr DL, Natoli TE, Litichevskiy L, Wadden D, Flynn C, Gould J, Asiedu JK, Narayan R, Subramanian A (2019) The GCTx format and cmap Py, R, M, J packages: resources for optimized storage and integrated traversal of annotated dense matrices. Bioinformatics 35: 1427- 1429
CrossRef Google scholar
[20]
Equils O, Shapiro A, Madak Z, Liu C, Lu D (2004) Human immunodeficiency virus type 1 protease inhibitors block toll-like receptor 2 (TLR2)- and TLR4-Induced NF-kappaB activation. Antimicrob Agents Chemother 48: 3905- 3911
CrossRef Google scholar
[21]
Fedorov O, Marsden B, Pogacic V, Rellos P, Müller S, Bullock AN, Schwaller J, Sundström M, Knapp S (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA 104: 20523- 20528
CrossRef Google scholar
[22]
Filzen TM, Kutchukian PS, Hermes JD, Li J, Tudor M (2017) Representing high throughput expression profiles via perturbation barcodes reveals compound targets. PLoS Comp Bio 13: e1005335.
CrossRef Google scholar
[23]
Fish PV, Filippakopoulos P, Bish G, Brennan PE, Bunnage ME, Cook AS, Federov O, Gerstenberger BS, Jones H, Knapp S (2012) Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem 55: 9831- 9837
CrossRef Google scholar
[24]
Gallatin WM, Dietsch GN, Odingo J, Florio V (2019) Ectonucleotide pyrophosphatase-phosphodiesterase (ENPP) inhibitors and uses thereof. (Mavupharma, Inc., USA)
[25]
Gardner TS, Di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301: 102- 105
CrossRef Google scholar
[26]
Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50: 205- 216
CrossRef Google scholar
[27]
Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. https://arxiv.org/abs/1709.05584
[28]
Hirakawa M, Matos TR, Liu H, Koreth J, Kim HT, Paul NE, Murase K, Whangbo J, Alho AC, Nikiforow S, et al (2016) Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK cells. JCI Insight 1: e89278.
[29]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497- 506
CrossRef Google scholar
[30]
Ianevski A, Yao R, Fenstad MH, Biza S, Zusinaite E, Reisberg T, Lysvand H, Løseth K, Landsem VM, Malmring JF et al (2020) Potential antiviral options against SARS-CoV-2 infection. Viruses 12: 642
CrossRef Google scholar
[31]
Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci USA 107: 14621- 14626
CrossRef Google scholar
[32]
Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21: 635- 637
CrossRef Google scholar
[33]
Kabir A, Honda RP, Kamatari YO, Endo S, Fukuoka M, Kuwata K (2016) Effects of ligand binding on the stability of aldo-keto reductases: implications for stabilizer or destabilizer chaperones. Protein Sci 25: 2132- 2141
CrossRef Google scholar
[34]
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
[35]
Koleti A, Terryn R, Stathias V, Chung C, Cooper DJ, Turner JP, Vidović D, Forlin M, Kelley TT, D’Urso A (2018) Data portal for the library of integrated network-based cellular signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data. Nucl Acids Res 46: D558- D566
CrossRef Google scholar
[36]
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929- 1935
CrossRef Google scholar
[37]
Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11: 733- 739
CrossRef Google scholar
[38]
Lenselink EB, Ten Dijke N, Bongers B, Papadatos G, Van Vlijmen HWT, Kowalczyk W, Ijzerman AP, Van Westen GJP (2017) Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J Cheminform 9: 1- 14
CrossRef Google scholar
[39]
Li L, Yin Q, Kuss P, Maliga Z, Millan JL, Wu H, Mitchison TJ (2014) Hydrolysis of 2’3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol 10: 1043- 1048
CrossRef Google scholar
[40]
Liang X, Young WC, Hung L-H, Raftery AE, Yeung KY (2019) Integration of multiple data sources for gene network inference using genetic perturbation data. J Comput Biol 26: 1113- 1129
CrossRef Google scholar
[41]
Liu TP, Hsieh YY, Chou CJ, Yang PM (2018) Systematic polypharmacology and drug repurposing via an integrated L1000-based connectivity map database mining. R Soc Open Sci 5: 181321
CrossRef Google scholar
[42]
Madhukar NS, Khade PK, Huang L, Gayvert K, Galletti G, Stogniew M, Allen JE, Giannakakou P, Elemento O (2019) A Bayesian machine learning approach for drug target identification using diverse data types. Nat Commun 10: 5221
CrossRef Google scholar
[43]
Musa A, Ghoraie LS, Zhang SD, Glazko G, Yli-Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib F (2018) A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 19: 506- 523
CrossRef Google scholar
[44]
Musarrat F, Chouljenko V, Dahal A, Nabi R, Chouljenko T, Jois SD, Kousoulas KG (2020) The anti-HIV drug nelfinavir mesylate(Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J Med Virol https://doi.org/10.1002/jmv.25985.
[45]
Noh H, Gunawan R (2016) Inferring gene targets of drugs and chemical compounds from gene expression profiles. Bioinformatics 32: 2120- 2127
CrossRef Google scholar
[46]
Noh H, Shoemaker JE, Gunawan R (2018) Network perturbation analysis of gene transcriptional profiles reveals protein targets and mechanism of action of drugs and influenza A viral infection. Nucl Acids Res 46: e34.
CrossRef Google scholar
[47]
Novotny-Diermayr V, Sangthongpitag K, Hu CY, Wu X, Sausgruber N, Yeo P, Greicius G, Pettersson S, Liang AL, Loh YK (2010) SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol Cancer Ther 9: 642- 652
CrossRef Google scholar
[48]
Ohashi H, Watashi K, Saso W, Shionoya K, Iwanami S, Hirokawa T, Shirai T, Kanaya S, Ito Y, Kim KS, et al (2020) Multidrug treatment with nelfinavir and cepharanthine against COVID-19. https://doi.org/10.1101/2020.04.14.039925v1.
[49]
Pabon NA, Xia Y, Estabrooks SK, Ye Z, Herbrand AK, Süß E, Biondi RM, Assimon VA, Gestwicki JE, Brodsky JL, et al (2018) Predicting protein targets for drug-like compounds using transcriptomics. PLOS Commun Biol 14: e1006651.
CrossRef Google scholar
[50]
Pabon NA, Zhang Q, Cruz JA, Schipper DL, Camacho CJ, Lee REC (2019) A network-centric approach to drugging TNF-induced NF-κB signaling. Nat Commun 10: 860
CrossRef Google scholar
[51]
Pacold ME, Brimacombe KR, Chan SH, Rohde JM, Lewis CA, Swier LJYM, Possemato R, Chen WW, Sullivan LB, Fiske BP et al (2016) A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol 12: 452- 458
CrossRef Google scholar
[52]
Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY, Tran JL, Moore P, Lehmann S, Eberl HC et al (2018) Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564: 439- 443
CrossRef Google scholar
[53]
Salviato E, Djordjilović V, Chiogna M, Romualdi C (2019) SourceSet:a graphical model approach to identify primary genes in perturbed biological pathways. PLoS Comp Biol 15: e1007357.
CrossRef Google scholar
[54]
Schenone M, Dančík V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9: 232- 240
CrossRef Google scholar
[55]
Schomburg KT, Bietz S, Briem H, Henzler AM, Urbaczek S, Rarey M (2014) Facing the challenges of structure-based target prediction by inverse virtual screening. J Chem Inf Model 54: 1676- 1686
CrossRef Google scholar
[56]
Sheridan RP (2013) Time-split cross-validation as a method for estimating the goodness of prospective prediction. J Chem Inf Model 53: 783- 790
CrossRef Google scholar
[57]
Sramek M, Neradil J, Veselska R (2017) Much more than you expected: the non-DHFR-mediated effects of methotrexate. Biochim 1861: 499- 503
CrossRef Google scholar
[58]
Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu XD, Gould J, Davis JF, Tubelli AA, Asiedu JK et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171: 1437- 1452
CrossRef Google scholar
[59]
Sun B, Shah B, Fiskus W, Qi J, Rajapakshe K, Coarfa C, Li L, Devaraj SGT, Sharma S, Zhang L et al (2015) Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood 126: 1565- 1574
[60]
Svensson F, Karlén A, Sköld C (2012) Virtual screening data fusion using both structure- and ligand-based methods. J Chem Inf Model 52: 225- 232
CrossRef Google scholar
[61]
Sydow D, Burggraaff L, Szengel A, van Vlijmen HWT, Ijzerman AP, van Westen GJP, Volkamer A (2019) Advances and challenges in computational target prediction. J Chem Inf Model 59: 1728- 1742
CrossRef Google scholar
[62]
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucl Acids Res 47: D607- D613
CrossRef Google scholar
[63]
Tanaka Y, Sato Y, Sasaki T (2013) Suppression of coronavirus replication by cyclophilin inhibitors. Viruses 5: 1250- 1260
CrossRef Google scholar
[64]
Terrett NK, Bell AS, Brown D, Ellis P (1996) Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg Med Chem Lett 6: 1819- 1824
CrossRef Google scholar
[65]
Timme N, Han Y, Liu S, Yosief HO, García HD, Bei Y, Klironomos F, MacArthur IC, Szymansky A, von Stebut JJTO (2020) Smallmolecule dual PLK1 and BRD4 inhibitors are active against preclinical models of pediatric solid tumors. Transl Oncol 13: 221- 232
CrossRef Google scholar
[66]
Wallet MA, Reist CM, Williams JC, Appelberg S, Guiulfo GL, Gardner B, Sleasman JW, Goodenow MM (2012) The HIV-1 protease inhibitor nelfinavir activates PP2 and inhibits MAPK signaling in macrophages: a pathway to reduce inflammation. J Leukoc Biol 92: 795- 805
CrossRef Google scholar
[67]
Wang M, Noh H, Mochan E, Shoemaker JE (2020) Network insights into improving drug target inference algorithms. Preprint at. https://doi.org/10.1101/2020.01.17.910885
[68]
Woo JH, Shimoni Y, Yang WS, Subramaniam P, Iyer A, Nicoletti P, Martínez MR, López G, Mattioli M, Realubit R (2015) Elucidating compound mechanism of action by network perturbation analysis. Cell 162: 441- 451
CrossRef Google scholar
[69]
Xie L, He S, Song X, Bo X, Zhang Z (2018) Deep learning-based transcriptome data classification for drug-target interaction prediction. BMC Genomics 19: 667
CrossRef Google scholar
[70]
Xu C, Ai DS, Suo SB, Chen XW, Yan YZ, Cao YQ, Sun N, Chen WZ, McDermott J, Zhang SQ et al (2018) Accurate drug repositioning through non-tissue-specific core signatures from cancer transcriptomes. Cell Rep 25: 523- 535
CrossRef Google scholar
[71]
Xu L, Song X, Su L, Zheng Y, Li R, Sun J (2019) New therapeutic strategies based on IL-2 to modulate Treg cells for autoimmune diseases. Int Immunopharmacol 72: 322- 329
CrossRef Google scholar
[72]
Xu Z, Peng C, Shi Y, Zhu Z, Mu K, Wang X, Zhu W (2020a) Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. https://doi.org/10.1101/2020.01.27.921627v1
[73]
Xu Z, Yao H, Shen J, Wu N, Xu Y, Lu X, Zhu W, Li L-J (2020b) Nelfinavir is active against SARS-CoV-2 in Vero E6 cells. https://chemrxiv.org/articles/Nelfinavir_Is_Active_Against_SARS-CoV-2_in_Vero_E6_Cells/12039888.
[74]
Yamamoto N, Matsuyama S, Hoshino T, Yamamoto N (2020) Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. https://doi.org/10.1101/2020.04.06.026476v1.
[75]
Zhao L-H, Zhou XE, Yi W, Wu Z, Liu Y, Kang Y, Hou L, de Waal PW, Li S, Jiang Y et al (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25: 1219- 1236
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(3151 KB)

Accesses

Citations

Detail

Sections
Recommended

/