Nuclear cGAS: sequestration and beyond
Juli Bai, Feng Liu
Nuclear cGAS: sequestration and beyond
The cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway. In the past several years, a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes, DNA replication forks, the double-stranded breaks, and centromeres, suggesting that cGAS may have other functions in addition to its role in DNA sensing. However, while the innate immune function of cGAS is well established, the non-canonical nuclear function of cGAS remains poorly understood. Here, we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function, beyond its well-established role in dsDNA sensing and innate immune response.
cGAS / STING / innate immunity / nuclear translocation / DNA damage repair / micronuclei
[1] |
Abe T, Barber GN(2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NFkappaB activation through TBK1. J Virol 88:5328–5341
CrossRef
Google scholar
|
[2] |
Ablasser A, Chen ZJ(2019) cGAS in action: Expanding roles in immunity and inflammation. Science 363:eaat8657
CrossRef
Google scholar
|
[3] |
Andreeva L, Hiller B, Kostrewa D, Lassig C, de Oliveira Mann CC, Jan Drexler D, Maiser A, Gaidt M,Leonhardt H, Hornung V
CrossRef
Google scholar
|
[4] |
Antonin W, Neumann H(2016) Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol 40:15–22
CrossRef
Google scholar
|
[5] |
Artandi SE, DePinho RA(2000) A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 10:39–46
CrossRef
Google scholar
|
[6] |
Bai J, Cervantes C, He S, He J, Plasko GR, Wen J, Li Z, Yin D, Zhang C, Liu M
CrossRef
Google scholar
|
[7] |
Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B, Cai H, Yin D, Hu D, Li Z
CrossRef
Google scholar
|
[8] |
Bai J, Liu F(2019) The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes 68:1099–1108
CrossRef
Google scholar
|
[9] |
Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK
CrossRef
Google scholar
|
[10] |
Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, D’Silva DB, Moghaddas F, Tailler M, Lawlor KE, Zhan Y
CrossRef
Google scholar
|
[11] |
Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Kranzusch PJ, Kagan JC(2019) Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell 176:1432–1446
CrossRef
Google scholar
|
[12] |
Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, McGinty RK, Zhang Q(2020) Structural basis of nucleosome-dependent cGAS inhibition. Science 370:450–454
CrossRef
Google scholar
|
[13] |
Cao D, Han X, Fan X, Xu RM, Zhang X(2020) Structural basis for nucleosome-mediated inhibition of cGAS activity. Cell Res 30:1088–1097
CrossRef
Google scholar
|
[14] |
Chen H, Chen H, Zhang J, Wang Y, Simoneau A, Yang H, Levine AS, Zou L, Chen Z, Lan L(2020) cGAS suppresses genomic instability as a decelerator of replication forks. Sci Adv 6:108293
CrossRef
Google scholar
|
[15] |
Chen Q, Sun L, Chen ZJ(2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17:1142–1149
CrossRef
Google scholar
|
[16] |
Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP(2013) Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:332–337
CrossRef
Google scholar
|
[17] |
Cui S, Yu Q, Chu L, Cui Y, Ding M, Wang Q, Wang H, Chen Y, Liu X, Wang C(2020) Nuclear cGAS Functions Non-canonically to Enhance Antiviral Immunity via Recruiting Methyltransferase Prmt5. Cell Rep 33:108490
CrossRef
Google scholar
|
[18] |
Du M, Chen ZJ(2018) DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:704–709
CrossRef
Google scholar
|
[19] |
Fang R, Wang C, Jiang Q, Lv M, Gao P, Yu X, Mu P, Zhang R, Bi S, Feng JM
CrossRef
Google scholar
|
[20] |
Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P(2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132
CrossRef
Google scholar
|
[21] |
Gekara NO, Jiang H(2019) The innate immune DNA sensor cGAS: a membrane, cytosolic, or nuclear protein? Sci Signal 12:12–89
CrossRef
Google scholar
|
[22] |
Gentili M, Lahaye X, Nadalin F, Nader GPF, Puig Lombardi E, Herve S, De Silva NS, Rookhuizen DC, Zueva E, Goudot C
CrossRef
Google scholar
|
[23] |
Gluck S, Guey B, Gulen MF, Wolter K, Kang TW, Schmacke NA, Bridgeman A, Rehwinkel J, Zender L, Ablasser A(2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19:1061–1070
CrossRef
Google scholar
|
[24] |
Guey B, Wischnewski M, Decout A, Makasheva K, Kaynak M, Sakar MS, Fierz B, Ablasser A(2020) BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science 369:823–828
CrossRef
Google scholar
|
[25] |
Hakem R(2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27:589–605
CrossRef
Google scholar
|
[26] |
Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA(2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–470
CrossRef
Google scholar
|
[27] |
Hauer MH, Gasser SM(2017) Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 31:2204–2221
CrossRef
Google scholar
|
[28] |
Hong C, Tijhuis AE, Foijer F(2019) The cGAS paradox: contrasting roles for cGAS-STING pathway in chromosomal instability. Cells 8:1228
CrossRef
Google scholar
|
[29] |
Hooy RM, Sohn J(2018) The allosteric activation of cGAS underpins its dynamic signaling landscape. Elife 7:35–136
CrossRef
Google scholar
|
[30] |
Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH(2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898
CrossRef
Google scholar
|
[31] |
Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, Sohn J, Sung P, Gekara NO(2019) Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J 38:102718
CrossRef
Google scholar
|
[32] |
Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E(2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21:1621–1635
CrossRef
Google scholar
|
[33] |
Kranzusch PJ(2019) cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Curr Opin Struct Biol 59:178–187
CrossRef
Google scholar
|
[34] |
Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H, Kurumizaka H(2020) Structural basis for the inhibition of cGAS by nucleosomes. Science 370:455–458
CrossRef
Google scholar
|
[35] |
Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, Zueva E, Maurin M, Nadalin F, Knott GJ
CrossRef
Google scholar
|
[36] |
Lengauer C, Kinzler KW, Vogelstein B(1998) Genetic instabilities in human cancers. Nature 396:643–649
CrossRef
Google scholar
|
[37] |
Li T, Huang T, Du M, Chen X, Du F, Ren J, Chen ZJ(2021) Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371(6535):5386
CrossRef
Google scholar
|
[38] |
Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P(2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39:1019–1031
CrossRef
Google scholar
|
[39] |
Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, Jiang Y, Fei Y, Zhu C, Tan R
CrossRef
Google scholar
|
[40] |
Luecke S, Holleufer A, Christensen MH, Jonsson KL, Boni GA, Sorensen LK, Johannsen M, Jakobsen MR, Hartmann R, Paludan SR(2017) cGAS is activated by DNA in a lengthdependent manner. EMBO Rep 18:1707–1715
CrossRef
Google scholar
|
[41] |
Luger K, Dechassa ML, Tremethick DJ(2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447
CrossRef
Google scholar
|
[42] |
Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A
CrossRef
Google scholar
|
[43] |
Martire S, Banaszynski LA(2020) The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 21:522–541
CrossRef
Google scholar
|
[44] |
Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E(2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–1381
CrossRef
Google scholar
|
[45] |
Michalski S, de Oliveira Mann CC, Stafford CA, Witte G, Bartho J, Lammens K, Hornung V, Hopfner KP(2020) Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature 587:678–682
CrossRef
Google scholar
|
[46] |
Motwani M, Pesiridis S, Fitzgerald KA(2019) DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 20:657–674
CrossRef
Google scholar
|
[47] |
Nassour J, Radford R, Correia A, Fuste JM, Schoell B, Jauch A, Shaw RJ, Karlseder J(2019) Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565:659–663
CrossRef
Google scholar
|
[48] |
Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM, Knipe DM(2015) cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci U S A 112:E1773–1781
CrossRef
Google scholar
|
[49] |
Pathare GR, Decout A, Gluck S, Cavadini S, Makasheva K, Hovius R, Kempf G, Weiss J, Kozicka Z, Guey B
CrossRef
Google scholar
|
[50] |
Raab M, Gentili M, de Belly H, Thiam HR, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon-Dumenil AM, Manel N
CrossRef
Google scholar
|
[51] |
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM(1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868
CrossRef
Google scholar
|
[52] |
Sun H, Huang Y, Mei S, Xu F, Liu X, Zhao F, Yin L, Zhang D, Wei L, Wu C
CrossRef
Google scholar
|
[53] |
Sun L, Wu J, Du F, Chen X, Chen ZJ(2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791
CrossRef
Google scholar
|
[54] |
Uggenti C, Lepelley A, Depp M, Badrock AP, Rodero MP, El-Daher MT, Rice GI, Dhir S, Wheeler AP, Dhir A
CrossRef
Google scholar
|
[55] |
Uhlorn BL, Gamez ER, Li S, Campos SK(2020) Attenuation of cGAS/STING activity during mitosis. Life Sci Alliance 3(9): e201900636
CrossRef
Google scholar
|
[56] |
Volkman HE, Cambier S, Gray EE, Stetson DB(2019) Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife 8:e47491
CrossRef
Google scholar
|
[57] |
Wang H, Zang C, Ren M, Shang M, Wang Z, Peng X, Zhang Q, Wen X, Xi Z, Zhou C(2020) Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS). Sci Rep 10:15385
CrossRef
Google scholar
|
[58] |
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA
CrossRef
Google scholar
|
[59] |
Wilkins BJ, Rall NA, Ostwal Y, Kruitwagen T, Hiragami-Hamada K, Winkler M, Barral Y, Fischle W, Neumann H(2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80
CrossRef
Google scholar
|
[60] |
Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ(2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830
CrossRef
Google scholar
|
[61] |
Wu X, Wu FH, Wang X, Wang L, Siedow JN, Zhang W, Pei ZM(2014) Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res 42:8243–8257
CrossRef
Google scholar
|
[62] |
Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, Tian Y, Fan Z(2016) Erratum: Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 17:469
CrossRef
Google scholar
|
[63] |
Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, Patel DJ(2019) Human cGAS catalytic domain has an additional DNAbinding interface that enhances enzymatic activity and liquidphase condensation. Proc Natl Acad Sci U S A 116:11946–11955
CrossRef
Google scholar
|
[64] |
Yang H, Wang H, Ren J, Chen Q, Chen ZJ(2017) cGAS is essential for cellular senescence. Proc Natl Acad Sci U S A 114:E4612–E4620
CrossRef
Google scholar
|
[65] |
Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z, Brautigam CA, Zhang X, Chen ZJ(2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6:421–430
CrossRef
Google scholar
|
[66] |
Zhao B, Xu P, Rowlett CM, Jing T, Shinde O, Lei Y, West AP, Liu WR, Li P(2020) The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature 587:673–677
CrossRef
Google scholar
|
[67] |
Zhao M, Wang F, Wu J, Cheng Y, Cao Y, Wu X, Ma M, Tang F, Liu Z, Liu H
CrossRef
Google scholar
|
[68] |
Zhong L, Hu MM, Bian LJ, Liu Y, Chen Q, Shu HB(2020) Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discov 6:26
CrossRef
Google scholar
|
[69] |
Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, Gray NS, Mekalanos JJ, Kranzusch PJ(2018) Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell 174:300–311
CrossRef
Google scholar
|
[70] |
Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H(2019) The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178:302–315
CrossRef
Google scholar
|
/
〈 | 〉 |