Nuclear cGAS: sequestration and beyond

Juli Bai, Feng Liu

PDF(2090 KB)
PDF(2090 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (2) : 90-101. DOI: 10.1007/s13238-021-00869-0
REVIEW
REVIEW

Nuclear cGAS: sequestration and beyond

Author information +
History +

Abstract

The cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway. In the past several years, a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes, DNA replication forks, the double-stranded breaks, and centromeres, suggesting that cGAS may have other functions in addition to its role in DNA sensing. However, while the innate immune function of cGAS is well established, the non-canonical nuclear function of cGAS remains poorly understood. Here, we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function, beyond its well-established role in dsDNA sensing and innate immune response.

Keywords

cGAS / STING / innate immunity / nuclear translocation / DNA damage repair / micronuclei

Cite this article

Download citation ▾
Juli Bai, Feng Liu. Nuclear cGAS: sequestration and beyond. Protein Cell, 2022, 13(2): 90‒101 https://doi.org/10.1007/s13238-021-00869-0

References

[1]
Abe T, Barber GN(2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NFkappaB activation through TBK1. J Virol 88:5328–5341
CrossRef Google scholar
[2]
Ablasser A, Chen ZJ(2019) cGAS in action: Expanding roles in immunity and inflammation. Science 363:eaat8657
CrossRef Google scholar
[3]
Andreeva L, Hiller B, Kostrewa D, Lassig C, de Oliveira Mann CC, Jan Drexler D, Maiser A, Gaidt M,Leonhardt H, Hornung V(2017) cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549:394–398
CrossRef Google scholar
[4]
Antonin W, Neumann H(2016) Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol 40:15–22
CrossRef Google scholar
[5]
Artandi SE, DePinho RA(2000) A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 10:39–46
CrossRef Google scholar
[6]
Bai J, Cervantes C, He S, He J, Plasko GR, Wen J, Li Z, Yin D, Zhang C, Liu M(2020) Mitochondrial stress-activated cGAS STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun Biol 3:257
CrossRef Google scholar
[7]
Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B, Cai H, Yin D, Hu D, Li Z(2017) DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA releaseactivated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci U S A 114:12196–12201
CrossRef Google scholar
[8]
Bai J, Liu F(2019) The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes 68:1099–1108
CrossRef Google scholar
[9]
Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK(2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:467–472
CrossRef Google scholar
[10]
Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, D’Silva DB, Moghaddas F, Tailler M, Lawlor KE, Zhan Y(2020) TBK1 and IKKepsilon act redundantly to mediate STING-induced NFkappaB responses in myeloid cells. Cell Rep 31:107492
CrossRef Google scholar
[11]
Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Kranzusch PJ, Kagan JC(2019) Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell 176:1432–1446
CrossRef Google scholar
[12]
Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, McGinty RK, Zhang Q(2020) Structural basis of nucleosome-dependent cGAS inhibition. Science 370:450–454
CrossRef Google scholar
[13]
Cao D, Han X, Fan X, Xu RM, Zhang X(2020) Structural basis for nucleosome-mediated inhibition of cGAS activity. Cell Res 30:1088–1097
CrossRef Google scholar
[14]
Chen H, Chen H, Zhang J, Wang Y, Simoneau A, Yang H, Levine AS, Zou L, Chen Z, Lan L(2020) cGAS suppresses genomic instability as a decelerator of replication forks. Sci Adv 6:108293
CrossRef Google scholar
[15]
Chen Q, Sun L, Chen ZJ(2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17:1142–1149
CrossRef Google scholar
[16]
Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP(2013) Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:332–337
CrossRef Google scholar
[17]
Cui S, Yu Q, Chu L, Cui Y, Ding M, Wang Q, Wang H, Chen Y, Liu X, Wang C(2020) Nuclear cGAS Functions Non-canonically to Enhance Antiviral Immunity via Recruiting Methyltransferase Prmt5. Cell Rep 33:108490
CrossRef Google scholar
[18]
Du M, Chen ZJ(2018) DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:704–709
CrossRef Google scholar
[19]
Fang R, Wang C, Jiang Q, Lv M, Gao P, Yu X, Mu P, Zhang R, Bi S, Feng JM(2017) NEMO-IKKbeta are essential for IRF3 and NF-kappaB activation in the cGAS-STING pathway. J Immunol 199:3222–3233
CrossRef Google scholar
[20]
Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P(2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132
CrossRef Google scholar
[21]
Gekara NO, Jiang H(2019) The innate immune DNA sensor cGAS: a membrane, cytosolic, or nuclear protein? Sci Signal 12:12–89
CrossRef Google scholar
[22]
Gentili M, Lahaye X, Nadalin F, Nader GPF, Puig Lombardi E, Herve S, De Silva NS, Rookhuizen DC, Zueva E, Goudot C(2019) The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep 26:2377–2393
CrossRef Google scholar
[23]
Gluck S, Guey B, Gulen MF, Wolter K, Kang TW, Schmacke NA, Bridgeman A, Rehwinkel J, Zender L, Ablasser A(2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19:1061–1070
CrossRef Google scholar
[24]
Guey B, Wischnewski M, Decout A, Makasheva K, Kaynak M, Sakar MS, Fierz B, Ablasser A(2020) BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science 369:823–828
CrossRef Google scholar
[25]
Hakem R(2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27:589–605
CrossRef Google scholar
[26]
Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA(2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–470
CrossRef Google scholar
[27]
Hauer MH, Gasser SM(2017) Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 31:2204–2221
CrossRef Google scholar
[28]
Hong C, Tijhuis AE, Foijer F(2019) The cGAS paradox: contrasting roles for cGAS-STING pathway in chromosomal instability. Cells 8:1228
CrossRef Google scholar
[29]
Hooy RM, Sohn J(2018) The allosteric activation of cGAS underpins its dynamic signaling landscape. Elife 7:35–136
CrossRef Google scholar
[30]
Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH(2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898
CrossRef Google scholar
[31]
Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, Sohn J, Sung P, Gekara NO(2019) Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J 38:102718
CrossRef Google scholar
[32]
Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E(2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21:1621–1635
CrossRef Google scholar
[33]
Kranzusch PJ(2019) cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Curr Opin Struct Biol 59:178–187
CrossRef Google scholar
[34]
Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H, Kurumizaka H(2020) Structural basis for the inhibition of cGAS by nucleosomes. Science 370:455–458
CrossRef Google scholar
[35]
Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, Zueva E, Maurin M, Nadalin F, Knott GJ(2018) NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell 175:488–501
CrossRef Google scholar
[36]
Lengauer C, Kinzler KW, Vogelstein B(1998) Genetic instabilities in human cancers. Nature 396:643–649
CrossRef Google scholar
[37]
Li T, Huang T, Du M, Chen X, Du F, Ren J, Chen ZJ(2021) Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371(6535):5386
CrossRef Google scholar
[38]
Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P(2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39:1019–1031
CrossRef Google scholar
[39]
Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, Jiang Y, Fei Y, Zhu C, Tan R(2018) Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563:131–136
CrossRef Google scholar
[40]
Luecke S, Holleufer A, Christensen MH, Jonsson KL, Boni GA, Sorensen LK, Johannsen M, Jakobsen MR, Hartmann R, Paludan SR(2017) cGAS is activated by DNA in a lengthdependent manner. EMBO Rep 18:1707–1715
CrossRef Google scholar
[41]
Luger K, Dechassa ML, Tremethick DJ(2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447
CrossRef Google scholar
[42]
Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A(2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–465
CrossRef Google scholar
[43]
Martire S, Banaszynski LA(2020) The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 21:522–541
CrossRef Google scholar
[44]
Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E(2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–1381
CrossRef Google scholar
[45]
Michalski S, de Oliveira Mann CC, Stafford CA, Witte G, Bartho J, Lammens K, Hornung V, Hopfner KP(2020) Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature 587:678–682
CrossRef Google scholar
[46]
Motwani M, Pesiridis S, Fitzgerald KA(2019) DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 20:657–674
CrossRef Google scholar
[47]
Nassour J, Radford R, Correia A, Fuste JM, Schoell B, Jauch A, Shaw RJ, Karlseder J(2019) Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565:659–663
CrossRef Google scholar
[48]
Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM, Knipe DM(2015) cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci U S A 112:E1773–1781
CrossRef Google scholar
[49]
Pathare GR, Decout A, Gluck S, Cavadini S, Makasheva K, Hovius R, Kempf G, Weiss J, Kozicka Z, Guey B(2020) Structural mechanism of cGAS inhibition by the nucleosome. Nature. https://doi.org/10.1038/s41586-020-2750-6
CrossRef Google scholar
[50]
Raab M, Gentili M, de Belly H, Thiam HR, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon-Dumenil AM, Manel N(2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:359–362
CrossRef Google scholar
[51]
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM(1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868
CrossRef Google scholar
[52]
Sun H, Huang Y, Mei S, Xu F, Liu X, Zhao F, Yin L, Zhang D, Wei L, Wu C(2021) A nuclear export signal is required for cGAS to sense cytosolic DNA. Cell Rep 34:108586
CrossRef Google scholar
[53]
Sun L, Wu J, Du F, Chen X, Chen ZJ(2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791
CrossRef Google scholar
[54]
Uggenti C, Lepelley A, Depp M, Badrock AP, Rodero MP, El-Daher MT, Rice GI, Dhir S, Wheeler AP, Dhir A(2020) cGASmediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat Genet 52:1364–1372
CrossRef Google scholar
[55]
Uhlorn BL, Gamez ER, Li S, Campos SK(2020) Attenuation of cGAS/STING activity during mitosis. Life Sci Alliance 3(9): e201900636
CrossRef Google scholar
[56]
Volkman HE, Cambier S, Gray EE, Stetson DB(2019) Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife 8:e47491
CrossRef Google scholar
[57]
Wang H, Zang C, Ren M, Shang M, Wang Z, Peng X, Zhang Q, Wen X, Xi Z, Zhou C(2020) Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS). Sci Rep 10:15385
CrossRef Google scholar
[58]
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA(2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553–557
CrossRef Google scholar
[59]
Wilkins BJ, Rall NA, Ostwal Y, Kruitwagen T, Hiragami-Hamada K, Winkler M, Barral Y, Fischle W, Neumann H(2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80
CrossRef Google scholar
[60]
Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ(2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830
CrossRef Google scholar
[61]
Wu X, Wu FH, Wang X, Wang L, Siedow JN, Zhang W, Pei ZM(2014) Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res 42:8243–8257
CrossRef Google scholar
[62]
Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, Tian Y, Fan Z(2016) Erratum: Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 17:469
CrossRef Google scholar
[63]
Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, Patel DJ(2019) Human cGAS catalytic domain has an additional DNAbinding interface that enhances enzymatic activity and liquidphase condensation. Proc Natl Acad Sci U S A 116:11946–11955
CrossRef Google scholar
[64]
Yang H, Wang H, Ren J, Chen Q, Chen ZJ(2017) cGAS is essential for cellular senescence. Proc Natl Acad Sci U S A 114:E4612–E4620
CrossRef Google scholar
[65]
Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z, Brautigam CA, Zhang X, Chen ZJ(2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6:421–430
CrossRef Google scholar
[66]
Zhao B, Xu P, Rowlett CM, Jing T, Shinde O, Lei Y, West AP, Liu WR, Li P(2020) The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature 587:673–677
CrossRef Google scholar
[67]
Zhao M, Wang F, Wu J, Cheng Y, Cao Y, Wu X, Ma M, Tang F, Liu Z, Liu H(2021) CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 24:1–17
CrossRef Google scholar
[68]
Zhong L, Hu MM, Bian LJ, Liu Y, Chen Q, Shu HB(2020) Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discov 6:26
CrossRef Google scholar
[69]
Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, Gray NS, Mekalanos JJ, Kranzusch PJ(2018) Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell 174:300–311
CrossRef Google scholar
[70]
Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H(2019) The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178:302–315
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(2090 KB)

Accesses

Citations

Detail

Sections
Recommended

/