Cancer biology deciphered by single-cell transcriptomic sequencing

Yanmeng Li, Jianshi Jin, Fan Bai

PDF(749 KB)
PDF(749 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (3) : 167-179. DOI: 10.1007/s13238-021-00868-1
REVIEW
REVIEW

Cancer biology deciphered by single-cell transcriptomic sequencing

Author information +
History +

Abstract

Tumors are complex ecosystems in which heterogeneous cancer cells interact with their microenvironment composed of diverse immune, endothelial, and stromal cells. Cancer biology had been studied using bulk genomic and gene expression profiling, which however mask the cellular diversity and average the variability among individual molecular programs. Recent advances in single-cell transcriptomic sequencing have enabled a detailed dissection of tumor ecosystems and promoted our understanding of tumorigenesis at single-cell resolution. In the present review, we discuss the main topics of recent cancer studies that have implemented singlecell RNA sequencing (scRNA-seq). To study cancer cells, scRNA-seq has provided novel insights into the cancer stem-cell model, treatment resistance, and cancer metastasis. To study the tumor microenvironment, scRNA-seq has portrayed the diverse cell types and complex cellular states of both immune and non-immune cells interacting with cancer cells, with the promise to discover novel targets for future immunotherapy.

Keywords

single-cell transcriptomic sequencing / tumor microenvironment / cancer

Cite this article

Download citation ▾
Yanmeng Li, Jianshi Jin, Fan Bai. Cancer biology deciphered by single-cell transcriptomic sequencing. Protein Cell, 2022, 13(3): 167‒179 https://doi.org/10.1007/s13238-021-00868-1

References

[1]
Affara NI, Ruffell B, Medler TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q(2014) B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25:809–821
CrossRef Google scholar
[2]
Aizarani N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, Pessaux P, Baumert TF, Grün D(2019) A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572:199–204
CrossRef Google scholar
[3]
Amend SR, Roy S, Brown JS, Pienta KJ(2016) Ecological paradigms to understand the dynamics of metastasis. Cancer Lett 380:237–242
CrossRef Google scholar
[4]
Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M(2018) Single-cell map of in the breast tumor microenvironment. Cell 174:1293–1308. e1236
CrossRef Google scholar
[5]
Bartoschek M, Oskolkov N, Bocci M, Lovrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G(2018) Spatially and functionally distinct subclasses of breast cancerassociated fibroblasts revealed by single cell RNA sequencing. Nat Commun 9(1):5150
CrossRef Google scholar
[6]
Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, Kokkaliaris KD, Mercier F, Tabaka M, Hofree M(2019) A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177:1915–1932.e1916
CrossRef Google scholar
[7]
Baslan T, Hicks J(2017) Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer 17:557–569
CrossRef Google scholar
[8]
Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J, Ravi K, Esposito D, Lakshmi B(2012) Genomewide copy number analysis of single cells. Nat Protoc 7:1024–1041
CrossRef Google scholar
[9]
Berger MF, Mardis ER(2018) The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 15:353–365
CrossRef Google scholar
[10]
Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, Grimaldi G, Braun DA, Cuoco MS, Mayorga A(2021) Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39:649–661.e645
CrossRef Google scholar
[11]
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC(2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550
CrossRef Google scholar
[12]
Brodbeck T, Nehmann N, Bethge A, Wedemann G, Schumacher U(2014) Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model. Mol Cancer 13:244
CrossRef Google scholar
[13]
Burrell RA, McGranahan N, Bartek J, Swanton C(2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–345
CrossRef Google scholar
[14]
Cancer Genome Atlas Research Network (2012a) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525
CrossRef Google scholar
[15]
Cancer Genome Atlas Research Network (2012b) Comprehensive genomic characterization of squamous cell lung cancers The Cancer Genome Atlas Research Network (vol 489, pg 519, 2012). Nature 491:288–288
CrossRef Google scholar
[16]
Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550
CrossRef Google scholar
[17]
Cancer Genome Atlas Research Network, Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, Davis C, Wheeler DA, Murray BA, Schmidt L(2016) Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med 374:135–145
CrossRef Google scholar
[18]
Chen DS, Mellman I(2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330
CrossRef Google scholar
[19]
Chen YC, Sahoo S, Brien R, Jung S, Humphries B, Lee W, Cheng YH, Zhang Z, Luker KE, Wicha MS(2019) Single-cell RNAsequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis. Analyst 144:7296–7309
CrossRef Google scholar
[20]
Chung W, Eum HH, Lee HO, Lee KM, Lee HB, Kim KT, Ryu HS, Kim S, Lee JE, Park YH(2017) Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8:15081
CrossRef Google scholar
[21]
Cillo AR, Kurten CHL, Tabib T, Qi Z, Onkar S, Wang T, Liu A, Duvvuri U, Kim S, Soose RJ(2020) Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 52:183–199. e189
CrossRef Google scholar
[22]
Clevers H(2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319
CrossRef Google scholar
[23]
de Groot AE, Roy S, Brown JS, Pienta KJ, Amend SR(2017) Revisiting seed and soil: examining the primary tumor and cancer cell foraging in metastasis. Mol Cancer Res 15:361–370
CrossRef Google scholar
[24]
Dean M, Fojo T, Bates S(2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284
CrossRef Google scholar
[25]
Dominguez CX, Muller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A(2020) Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov 10:232–253
CrossRef Google scholar
[26]
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS(2019) Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 9:1102–1123
CrossRef Google scholar
[27]
Engblom C, Pfirschke C, Pittet MJ(2016) The role of myeloid cells in cancer therapies. Nat Rev Cancer 16:447–462
CrossRef Google scholar
[28]
Fearon ER, Vogelstein B(1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767
CrossRef Google scholar
[29]
Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM(2018) Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360:331–335
CrossRef Google scholar
[30]
Garraway LA, Lander ES(2013) Lessons from the cancer genome. Cell 153:17–37
CrossRef Google scholar
[31]
George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, Leenders F, Lu X, Fernandez-Cuesta L, Bosco G(2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47–53
CrossRef Google scholar
[32]
Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A(2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892
CrossRef Google scholar
[33]
Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, Sopp P, Norfo R, Rodriguez-Meira A, Ashley N(2017) Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med 23:692–702
CrossRef Google scholar
[34]
Guo W, Li L, He J, Liu Z, Han M, Li F, Xia X, Zhang X, Zhu Y, Wei Y(2020) Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat Genet 52:908–918
CrossRef Google scholar
[35]
Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R(2018) Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med 24:978–985
CrossRef Google scholar
[36]
Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, Gennert D, Li SQ, Livak KJ, Rozenblatt-Rosen O(2016) CEL-Seq2: sensitive highly-multiplexed single-cell RNASeq. Genome Biol 17:77
CrossRef Google scholar
[37]
Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323
CrossRef Google scholar
[38]
Hollern DP, Xu N, Thennavan A, Glodowski C, Garcia-Recio S, Mott KR, He X, Garay JP, Carey-Ewend K, Marron D(2019) B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 179:1191–1206.e1121
CrossRef Google scholar
[39]
Horning AM, Wang Y, Lin CK, Louie AD, Jadhav RR, Hung CN, Wang CM, Lin CL, Kirma NB, Liss MA(2018) Single-cell RNA-seq reveals a subpopulation of prostate cancer cells with enhanced cell-cycle-related transcription and attenuated androgen response. Cancer Res 78:853–864
CrossRef Google scholar
[40]
Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, Majeti R(2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3004315
CrossRef Google scholar
[41]
Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, Leeson R, Kanodia A, Mei S, Lin JR(2018) A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175:984–997.e924
CrossRef Google scholar
[42]
Jin S, Li R, Chen MY, Yu C, Tang LQ, Liu YM, Li JP, Liu YN, Luo YL, Zhao Y(2020) Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Res 30:950–965
CrossRef Google scholar
[43]
Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, Yu M, Sundaresan TK, Licausi JA, Desai R(2016) HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537:102–106
CrossRef Google scholar
[44]
Just NP, Finlay-Schultz J, Gillen AE, Cittelly DM, Wellberg EA, Horwitz KB, Kabos P, Sartorius CA(2018) Single-cell RNA sequencing defines regulatory networks in ER plus breast cancer organ-specific metastases. Cancer Res. https://doi.org/10.1158/1538-7445.AM2018-3027
CrossRef Google scholar
[45]
Kalluri R(2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598
CrossRef Google scholar
[46]
Kim KT, Lee HW, Lee HO, Song HJ, Jeong DE, Shin S, Kim H, Shin Y, Nam DH, Jeong BC(2016) Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol 17:80
CrossRef Google scholar
[47]
Klein-Goldberg A, Maman S, Witz IP(2014) The role played by the microenvironment in site-specific metastasis. Cancer Lett 352:54–58
CrossRef Google scholar
[48]
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW(2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201
CrossRef Google scholar
[49]
Kreso A, Dick JE(2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291
CrossRef Google scholar
[50]
Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J, Christian E, Pawlak M, Dionne D, Xia JR, Rozenblatt-Rosen O(2019) Checkpoint blockade immunotherapy induces dynamic changes in PD-1(−)CD8(+) tumor-infiltrating T cells. Immunity 50:181
CrossRef Google scholar
[51]
Lambert AW, Pattabiraman DR, Weinberg RA(2017) Emerging biological principles of metastasis. Cell 168:670–691
CrossRef Google scholar
[52]
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwe H, Pircher A, Van den Eynde K(2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24:1277
CrossRef Google scholar
[53]
Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH(2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–765.e717
CrossRef Google scholar
[54]
Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang CY(2015) Singlecell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526:131–135
CrossRef Google scholar
[55]
Leruste A, Tosello J, Ramos RN, Tauziede-Espariat A, Brohard S, Han ZY, Beccaria K, Andrianteranagna M, Caudana P, Nikolic J(2019) Clonally expanded T cells reveal immunogenicity of rhabdoid tumors. Cancer Cell 36:597
CrossRef Google scholar
[56]
Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan WS(2017) Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet 49:708–718
CrossRef Google scholar
[57]
Li HJ, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, van den Braber M, Rozeman EA, Haanen JBAG, Blank CU(2019) Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176:775
CrossRef Google scholar
[58]
Ligorio M, Sil S, Malagon-Lopez J, Nieman LT, Misale S, Di Pilato M, Ebright RY, Karabacak MN, Kulkarni AS, Liu A(2019) Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell 178:160
CrossRef Google scholar
[59]
Lu Y, Zhao Q, Liao JY, Song E, Xia Q, Pan J, Li Y, Li J, Zhou B, Ye Y(2020) Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell 180(6):1081–1097
CrossRef Google scholar
[60]
Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, Silva AS, Gerlinger M, Yuan YY, Pienta KJ(2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 17:605–619
CrossRef Google scholar
[61]
Maman S, Witz IP(2018) A history of exploring cancer in context. Nat Rev Cancer 18:359–376
CrossRef Google scholar
[62]
McGranahan N, Swanton C(2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628
CrossRef Google scholar
[63]
Merlo LMF, Pepper JW, Reid BJ, Maley CC(2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935
CrossRef Google scholar
[64]
Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, Singh B, Rosenblum MD, Fuchs E (2019) Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177:1172–1186. e1114
CrossRef Google scholar
[65]
Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A(2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5:S5
CrossRef Google scholar
[66]
Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, Desai R, Fox DB, Brannigan BW, Trautwein J(2015) RNASeq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349:1351–1356
CrossRef Google scholar
[67]
Muller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, Watchmaker PB, Yagnik G, Di Lullo E, Malatesta M(2017) Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 18:234
CrossRef Google scholar
[68]
Murugaesu N, Wilson GA, Birkbak NJ, Watkins T, McGranahan N, Kumar S, Abbassi-Ghadi N, Salm M, Mitter R, Horswell S(2015) Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov 5:821–831
CrossRef Google scholar
[69]
Nakagawa H, Fujita M(2018) Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci 109:513–522
CrossRef Google scholar
[70]
Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D(2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94
CrossRef Google scholar
[71]
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM(2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:835–849.e821
CrossRef Google scholar
[72]
Orimo A, Weinberg RA(2006) Stromal fibroblasts in cancer—a novel tumor-promoting cell type. Cell Cycle 5:1597–1601
CrossRef Google scholar
[73]
Pantel K, Brakenhoff RH(2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456
CrossRef Google scholar
[74]
Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S(2018) Identification of the tumour transition states occurring during EMT. Nature 556:463–468
CrossRef Google scholar
[75]
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL(2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401
CrossRef Google scholar
[76]
Paulson KG, Voillet V, McAfee MS, Hunter DS, Wagener FD, Perdicchio M, Valente WJ, Koelle SJ, Church CD, Vandeven N(2018) Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat Commun 9:3868
CrossRef Google scholar
[77]
Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R(2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098
CrossRef Google scholar
[78]
Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS(2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:1611–1624.e1624
CrossRef Google scholar
[79]
Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB, Bar-Sagi D(2016) IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov 6:247–255
CrossRef Google scholar
[80]
Rambow F, Rogiers A, Marin-Bejar O, Aibar S, Femel J, Dewaele M, Karras P, Brown D, Chang YH, Debiec-Rychter M(2018) Toward minimal residual disease-directed therapy in melanoma. Cell 174:843
CrossRef Google scholar
[81]
Ramskold D, Luo SJ, Wang YC, Li R, Deng QL, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC(2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30:777–782
CrossRef Google scholar
[82]
Ren X, Kang B, Zhang Z(2018) Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol 19:211
CrossRef Google scholar
[83]
Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, Casanova-Acebes M, Khudoynazarova M, Agudo J, Tung N(2016) Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44:924–938
CrossRef Google scholar
[84]
Savage P, Blanchet-Cohen A, Revil T, Badescu D, Saleh SMI, Wang YC, Zuo D, Liu L, Bertos NR, Munoz-Ramos V(2017) A targetable EGFR-dependent tumor-initiating program in breast cancer. Cell Rep 21:1140–1149
CrossRef Google scholar
[85]
Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, Salgado R, Byrne DJ, Teo ZL, Dushyanthen S(2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24:986–993
CrossRef Google scholar
[86]
Sceneay J, Chow MT, Chen A, Halse HM, Wong CSF, Andrews DM, Sloan EK, Parker BS, Bowtell DD, Smyth MJ(2012) Primary tumor hypoxia recruits CD11b(+)/Ly6C(med)/Ly6G(+) immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72:3906–3911
CrossRef Google scholar
[87]
Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, Nyman J, Sakuishi K, Kurtulus S, Gennert D(2016) A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166:1500–1511.e1509
CrossRef Google scholar
[88]
Song QQ, Hawkins GA, Wudel L, Chou PC, Forbes E, Pullikuth AK, Liu L, Jin GX, Craddock L, Topaloglu U(2019) Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq. Cancer Med US 8:3072–3085
CrossRef Google scholar
[89]
Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, Marjoram P, Siegmund K, Press MF, Shibata D(2015) A Big Bang model of human colorectal tumor growth. Nat Genet 47:209–216
CrossRef Google scholar
[90]
Suva ML, Tirosh I(2019) Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol Cell 75:7–12
CrossRef Google scholar
[91]
Swanton C, Govindan R(2016) Clinical implications of genomic discoveries in lung cancer. N Engl J Med 374:1864–1873
CrossRef Google scholar
[92]
Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J(2019) Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566:553
CrossRef Google scholar
[93]
Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A(2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–386
CrossRef Google scholar
[94]
Tirosh I, Izar B, Prakadan SM, Wadsworth MH II, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G(2016a) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196
[95]
Tirosh I, Suva ML(2019) Deciphering human tumor biology by single-cell expression profiling. Annu Rev Cancer Biol 3:151–166
CrossRef Google scholar
[96]
Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM, Rodman C, Mount C, Filbin MG(2016b) Singlecell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539:309–313
[97]
Turajlic S, Sottoriva A, Graham T, Swanton C(2019) Resolving genetic heterogeneity in cancer. Nat Rev Genet 20:404–416
CrossRef Google scholar
[98]
Turajlic S, Swanton C(2017) Implications of cancer evolution for drug development. Nat Rev Drug Discov 16:441–442
CrossRef Google scholar
[99]
Valkenburg KC, de Groot AE, Pienta KJ(2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15:366–381
CrossRef Google scholar
[100]
van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia S, Verga JA, Stephansky J, Pastika TJ, Lombardi Story J(2019) Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176:1265–1281.e1224
CrossRef Google scholar
[101]
Velten L, Story BA, Hernandez-Malmierca P, Raffel S, Leonce DR, Milbank J, Paulsen M, Demir A, Szu-Tu C, Fromel R(2021) Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat Commun 12:1366
CrossRef Google scholar
[102]
Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V, Escalante LE, Shaw ML, Rodman C(2017) Decoupling genetics, lineages, and microenvironment in IDHmutant gliomas by single-cell RNA-seq. Science. https://doi.org/10.1126/science.aai8478
CrossRef Google scholar
[103]
Vermeulen L, Snippert HJ(2014) Stem cell dynamics in homeostasis and cancer of the intestine. Nat Rev Cancer 14:468–480
CrossRef Google scholar
[104]
Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL, Sundaravadanam Y, Ramaswamy V, Hendrikse LD, Kumar S, Mack SC(2019) Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 572:67–73
CrossRef Google scholar
[105]
Wan LL, Pantel K, Kang YB(2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19:1450–1464
CrossRef Google scholar
[106]
Wang QH, Hu X, Muller F, Kim H, Squatrito M, Mikkelsen T, Scarpace L, Barthel F, Lin YH, Satani N(2016) Tumor evolution of glioma intrinsic gene expression subtype associates with immunological changes in the microenvironment. Neuro-Oncology 18:202–202
CrossRef Google scholar
[107]
Weinberg RA(2002) Cancer Biology and Therapy: the road ahead. Cancer Biol Ther 1:3
CrossRef Google scholar
[108]
Weis SM, Cheresh DA(2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370
CrossRef Google scholar
[109]
Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A(2016) Identification of neutral tumor evolution across cancer types. Nat Genet 48:238–244
CrossRef Google scholar
[110]
Xing X, Yang F, Huang Q, Guo H, Li J, Qiu M, Bai F, Wang J(2021) Decoding the multicellular ecosystem of lung adenocarcinoma manifested as pulmonary subsolid nodules by single-cell RNA sequencing. Sci Adv. https://doi.org/10.1126/sciadv.abd9738
CrossRef Google scholar
[111]
Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, Ema H, Nakauchi H(2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:1112–1126
CrossRef Google scholar
[112]
Yost KE, Satpathy AT, Wells DK, Qi YY, Wang CL, Kageyama R, McNamara KL, Granja JM, Sarin KY, Brown RA(2019) Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med 25:1251
CrossRef Google scholar
[113]
Young MD, Mitchell TJ, Braga FAV, Tran MGB, Stewart BJ, Ferdinand JR, Collord G, Botting RA, Popescu DM, Loudon KW(2018) Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361:594
CrossRef Google scholar
[114]
Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY(2018) Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564:268–272
CrossRef Google scholar
[115]
Zhang L, Zhang Z(2019) Recharacterizing tumor-infiltrating lymphocytes by single-cell RNA sequencing. Cancer Immunol Res 7:1040–1046
CrossRef Google scholar
[116]
Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind D(2019) Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179:829–845.e820
CrossRef Google scholar
[117]
Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q(2017a) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169:1342–1356.e1316
CrossRef Google scholar
[118]
Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J(2017b) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049
CrossRef Google scholar
[119]
Zheng H, Pomyen Y, Hernandez MO, Li C, Livak F, Tang W, Dang H, Greten TF, Davis JL, Zhao Y(2018) Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68:127–140
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(749 KB)

Accesses

Citations

Detail

Sections
Recommended

/