RNA m6A meets transposable elements and chromatin
Chenxi He, Fei Lan
RNA m6A meets transposable elements and chromatin
[1] |
Balacco DL, Soller M(2019) The m(6)A Writer: rise of a machine for growing tasks. Biochemistry 58:363–378
CrossRef
Google scholar
|
[2] |
Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N
CrossRef
Google scholar
|
[3] |
Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galan C, Winter GE, Engist B, Gerle B
CrossRef
Google scholar
|
[4] |
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc’his D(2021) m(6)A RNA methylation regulates the fate of endogenous retroviruses. Nature 591:312–316
CrossRef
Google scholar
|
[5] |
Chen C, Liu W, Guo J, Liu Y, Liu X, Liu J, Dou X, Le R, Huang Y, Li C
CrossRef
Google scholar
|
[6] |
Chuong EB, Elde NC, Feschotte C(2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86
CrossRef
Google scholar
|
[7] |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M
CrossRef
Google scholar
|
[8] |
Epstein P, Reddy R, Henning D, Busch H(1980) The nucleotide sequence of nuclear U6 (4.7 S) RNA. J Biol Chem 255:8901–8906
CrossRef
Google scholar
|
[9] |
Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS
CrossRef
Google scholar
|
[10] |
Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, Chen Z, Deng X, Xiao G, Auer F
CrossRef
Google scholar
|
[11] |
Hwang SY, Jung H, Mun S, Lee S, Park K, Baek SC, Moon HC, Kim H, Kim B, Choi Y
CrossRef
Google scholar
|
[12] |
Johnson WE(2019) Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol 17:355–370
CrossRef
Google scholar
|
[13] |
Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ(2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 14:e1007412
CrossRef
Google scholar
|
[14] |
Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, Buhler M(2017) RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol 24:561–569
CrossRef
Google scholar
|
[15] |
Li X, Fu XD(2019) Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet 20:503–519
CrossRef
Google scholar
|
[16] |
Li Y, Xia L, Tan K, Ye X, Zuo Z, Li M, Xiao R, Wang Z, Liu X, Deng M
CrossRef
Google scholar
|
[17] |
Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, Zhao S, Shen B, Gao Y, Han D
CrossRef
Google scholar
|
[18] |
Liu J, Gao M, He J, Wu K, Lin S, Jin L, Chen Y, Liu H, Shi J, Wang X
CrossRef
Google scholar
|
[19] |
Maden BE (1986) Identification of the locations of the methyl groups in 18 S ribosomal RNA from Xenopus laevis and man. J Mol Biol 189:681–699
CrossRef
Google scholar
|
[20] |
Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y(2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–931
CrossRef
Google scholar
|
[21] |
Mendel M, Delaney K, Pandey RR, Chen KM, Wenda JM, Vagbo CB, Steiner FA, Homolka D, Pillai RS(2021) Splice site m(6)A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 184:3125
CrossRef
Google scholar
|
[22] |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR(2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373
CrossRef
Google scholar
|
[23] |
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK(2017) The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–835
CrossRef
Google scholar
|
[24] |
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X, Ramalho-Santos M(2018) A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174:391–405
CrossRef
Google scholar
|
[25] |
Shi H, Wei J, He C(2019) Where, When, and How: contextdependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74:640–650
CrossRef
Google scholar
|
[26] |
Slobodin B, Han R, Calderone V, Vrielink J, Loayza-Puch F, Elkon R, Agami R(2017) Transcription impacts the efficiency of mRNA translation via co-transcriptional n6-adenosine methylation. Cell 169:326–337
CrossRef
Google scholar
|
[27] |
Wang C, Zhu Y, Bao H, Jiang Y, Xu C, Wu J, Shi Y(2016) A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1. Nucleic Acids Res 44:969–982
CrossRef
Google scholar
|
[28] |
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O
CrossRef
Google scholar
|
[29] |
Xiao R, Chen JY, Liang Z, Luo D, Chen G, Lu ZJ, Chen Y, Zhou B, Li H, Du X
CrossRef
Google scholar
|
[30] |
Xu W, Li J, He C, Wen J, Ma H, Rong B, Diao J, Wang L, Wang J, Wu F
CrossRef
Google scholar
|
[31] |
Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI(2012) RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335:96–100
CrossRef
Google scholar
|
/
〈 | 〉 |