RNA m6A meets transposable elements and chromatin

Chenxi He , Fei Lan

Protein Cell ›› 2021, Vol. 12 ›› Issue (12) : 906 -910.

PDF (329KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (12) : 906 -910. DOI: 10.1007/s13238-021-00859-2
COMMENTARY
COMMENTARY

RNA m6A meets transposable elements and chromatin

Author information +
History +
PDF (329KB)

Cite this article

Download citation ▾
Chenxi He, Fei Lan. RNA m6A meets transposable elements and chromatin. Protein Cell, 2021, 12(12): 906-910 DOI:10.1007/s13238-021-00859-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balacco DL, Soller M(2019) The m(6)A Writer: rise of a machine for growing tasks. Biochemistry 58:363–378

[2]

Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N(2017) Promoter-bound METTL3 maintains myeloid leukaemia by m(6) dependent translation control. Nature 552:126–131

[3]

Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galan C, Winter GE, Engist B, Gerle B(2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55:277–290

[4]

Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc’his D(2021) m(6)A RNA methylation regulates the fate of endogenous retroviruses. Nature 591:312–316

[5]

Chen C, Liu W, Guo J, Liu Y, Liu X, Liu J, Dou X, Le R, Huang Y, Li C(2021) Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein Cell.

[6]

Chuong EB, Elde NC, Feschotte C(2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86

[7]

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M(2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

[8]

Epstein P, Reddy R, Henning D, Busch H(1980) The nucleotide sequence of nuclear U6 (4.7 S) RNA. J Biol Chem 255:8901–8906

[9]

Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS(2015) Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347:1002–1006

[10]

Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, Chen Z, Deng X, Xiao G, Auer F(2019) Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567:414–419

[11]

Hwang SY, Jung H, Mun S, Lee S, Park K, Baek SC, Moon HC, Kim H, Kim B, Choi Y(2021) L1 retrotransposons exploit RNA m (6)A modification as an evolutionary driving force. Nat Commun 12:880

[12]

Johnson WE(2019) Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol 17:355–370

[13]

Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ(2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 14:e1007412

[14]

Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, Buhler M(2017) RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol 24:561–569

[15]

Li X, Fu XD(2019) Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet 20:503–519

[16]

Li Y, Xia L, Tan K, Ye X, Zuo Z, Li M, Xiao R, Wang Z, Liu X, Deng M(2020) N(6)-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 52:870–877

[17]

Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, Zhao S, Shen B, Gao Y, Han D(2020) N (6)-methyladenosine of chromosomeassociated regulatory RNA regulates chromatin state and transcription. Science 367:580–586

[18]

Liu J, Gao M, He J, Wu K, Lin S, Jin L, Chen Y, Liu H, Shi J, Wang X(2021) The RNA m(6)A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature 591:322–326

[19]

Maden BE (1986) Identification of the locations of the methyl groups in 18 S ribosomal RNA from Xenopus laevis and man. J Mol Biol 189:681–699

[20]

Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y(2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–931

[21]

Mendel M, Delaney K, Pandey RR, Chen KM, Wenda JM, Vagbo CB, Steiner FA, Homolka D, Pillai RS(2021) Splice site m(6)A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 184:3125

[22]

Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR(2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373

[23]

Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK(2017) The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–835

[24]

Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X, Ramalho-Santos M(2018) A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174:391–405

[25]

Shi H, Wei J, He C(2019) Where, When, and How: contextdependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74:640–650

[26]

Slobodin B, Han R, Calderone V, Vrielink J, Loayza-Puch F, Elkon R, Agami R(2017) Transcription impacts the efficiency of mRNA translation via co-transcriptional n6-adenosine methylation. Cell 169:326–337

[27]

Wang C, Zhu Y, Bao H, Jiang Y, Xu C, Wu J, Shi Y(2016) A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1. Nucleic Acids Res 44:969–982

[28]

Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O(2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

[29]

Xiao R, Chen JY, Liang Z, Luo D, Chen G, Lu ZJ, Chen Y, Zhou B, Li H, Du X(2019) Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178:107–121

[30]

Xu W, Li J, He C, Wen J, Ma H, Rong B, Diao J, Wang L, Wang J, Wu F(2021) METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591:317–321

[31]

Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI(2012) RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335:96–100

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (329KB)

446

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/