RNA m6A meets transposable elements and chromatin

Chenxi He, Fei Lan

PDF(329 KB)
PDF(329 KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (12) : 906-910. DOI: 10.1007/s13238-021-00859-2
COMMENTARY
COMMENTARY

RNA m6A meets transposable elements and chromatin

Author information +
History +

Cite this article

Download citation ▾
Chenxi He, Fei Lan. RNA m6A meets transposable elements and chromatin. Protein Cell, 2021, 12(12): 906‒910 https://doi.org/10.1007/s13238-021-00859-2

References

[1]
Balacco DL, Soller M(2019) The m(6)A Writer: rise of a machine for growing tasks. Biochemistry 58:363–378
CrossRef Google scholar
[2]
Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N(2017) Promoter-bound METTL3 maintains myeloid leukaemia by m(6) dependent translation control. Nature 552:126–131
CrossRef Google scholar
[3]
Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galan C, Winter GE, Engist B, Gerle B(2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55:277–290
CrossRef Google scholar
[4]
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc’his D(2021) m(6)A RNA methylation regulates the fate of endogenous retroviruses. Nature 591:312–316
CrossRef Google scholar
[5]
Chen C, Liu W, Guo J, Liu Y, Liu X, Liu J, Dou X, Le R, Huang Y, Li C(2021) Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein Cell. https://doi.org/10.1101/2021.01.10.426065
CrossRef Google scholar
[6]
Chuong EB, Elde NC, Feschotte C(2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86
CrossRef Google scholar
[7]
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M(2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206
CrossRef Google scholar
[8]
Epstein P, Reddy R, Henning D, Busch H(1980) The nucleotide sequence of nuclear U6 (4.7 S) RNA. J Biol Chem 255:8901–8906
CrossRef Google scholar
[9]
Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS(2015) Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347:1002–1006
CrossRef Google scholar
[10]
Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, Chen Z, Deng X, Xiao G, Auer F(2019) Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567:414–419
CrossRef Google scholar
[11]
Hwang SY, Jung H, Mun S, Lee S, Park K, Baek SC, Moon HC, Kim H, Kim B, Choi Y(2021) L1 retrotransposons exploit RNA m (6)A modification as an evolutionary driving force. Nat Commun 12:880
CrossRef Google scholar
[12]
Johnson WE(2019) Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol 17:355–370
CrossRef Google scholar
[13]
Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM, Wang PJ(2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 14:e1007412
CrossRef Google scholar
[14]
Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, Buhler M(2017) RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol 24:561–569
CrossRef Google scholar
[15]
Li X, Fu XD(2019) Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet 20:503–519
CrossRef Google scholar
[16]
Li Y, Xia L, Tan K, Ye X, Zuo Z, Li M, Xiao R, Wang Z, Liu X, Deng M(2020) N(6)-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 52:870–877
CrossRef Google scholar
[17]
Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, Zhao S, Shen B, Gao Y, Han D(2020) N (6)-methyladenosine of chromosomeassociated regulatory RNA regulates chromatin state and transcription. Science 367:580–586
CrossRef Google scholar
[18]
Liu J, Gao M, He J, Wu K, Lin S, Jin L, Chen Y, Liu H, Shi J, Wang X(2021) The RNA m(6)A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature 591:322–326
CrossRef Google scholar
[19]
Maden BE (1986) Identification of the locations of the methyl groups in 18 S ribosomal RNA from Xenopus laevis and man. J Mol Biol 189:681–699
CrossRef Google scholar
[20]
Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y(2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–931
CrossRef Google scholar
[21]
Mendel M, Delaney K, Pandey RR, Chen KM, Wenda JM, Vagbo CB, Steiner FA, Homolka D, Pillai RS(2021) Splice site m(6)A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 184:3125
CrossRef Google scholar
[22]
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR(2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373
CrossRef Google scholar
[23]
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK(2017) The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–835
CrossRef Google scholar
[24]
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X, Ramalho-Santos M(2018) A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174:391–405
CrossRef Google scholar
[25]
Shi H, Wei J, He C(2019) Where, When, and How: contextdependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74:640–650
CrossRef Google scholar
[26]
Slobodin B, Han R, Calderone V, Vrielink J, Loayza-Puch F, Elkon R, Agami R(2017) Transcription impacts the efficiency of mRNA translation via co-transcriptional n6-adenosine methylation. Cell 169:326–337
CrossRef Google scholar
[27]
Wang C, Zhu Y, Bao H, Jiang Y, Xu C, Wu J, Shi Y(2016) A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1. Nucleic Acids Res 44:969–982
CrossRef Google scholar
[28]
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O(2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982
CrossRef Google scholar
[29]
Xiao R, Chen JY, Liang Z, Luo D, Chen G, Lu ZJ, Chen Y, Zhou B, Li H, Du X(2019) Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178:107–121
CrossRef Google scholar
[30]
Xu W, Li J, He C, Wen J, Ma H, Rong B, Diao J, Wang L, Wang J, Wu F(2021) METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591:317–321
CrossRef Google scholar
[31]
Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI(2012) RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335:96–100
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(329 KB)

Accesses

Citations

Detail

Sections
Recommended

/