Genomic instability as a major mechanism for acquired resistance to EGFR tyrosine kinase inhibitors in cancer
Bing Liu, Daniela Duenas, Li Zheng, Karen Reckamp, Binghui Shen
Genomic instability as a major mechanism for acquired resistance to EGFR tyrosine kinase inhibitors in cancer
[1] |
Aguilar-Serra J, Gimeno-Ballester V, Pastor-Clerigues A, Milara J, Marti-Bonmati E, Trigo-VicenteCAlós-Almiñana M, Cortijo J(2019) Osimertinib in first-line treatment of advanced EGFRmutated non-small-cell lung cancer: a cost-effectiveness analysis. J Comp Eff Res 8(11):853–863
CrossRef
Google scholar
|
[2] |
Awad MM, Leonardi GC, Kravets S, Dahlberg SE, Drilon A, Noonan SA, Camidge DR, Ou SI, Costa DB, Gadgeel SM
CrossRef
Google scholar
|
[3] |
Bandyopadhyay D, Mandal M, Adam L, Mendelsohn J, Kumar R(1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273(3):1568–1573
CrossRef
Google scholar
|
[4] |
Baraibar I, Mezquita L, Gil-Bazo I, Planchard D(2020) Novel drugs targeting EGFR and HER2 exon 20 mutations in metastatic NSCLC. Crit Rev Oncol Hematol 148:102906
CrossRef
Google scholar
|
[5] |
Bareschino MA, Schettino C, Troiani T, Martinelli E, Morgillo F, Ciardiello F(2007) Erlotinib in cancer treatment. Ann Oncol 18 (Suppl 6):vi35–vi41
CrossRef
Google scholar
|
[6] |
Bębenek A, Ziuzia-Graczyk I(2018) Fidelity of DNA replication-a matter of proofreading. Curr Genet 64(5):985–996
CrossRef
Google scholar
|
[7] |
Cao X, Zhou Y, Sun H, Xu M, Bi X, Zhao Z, Shen B, Wan F, Hong Z, Lan L
CrossRef
Google scholar
|
[8] |
Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L, Chen DJ, Kehlbach R, Rodemann HP(2005a) Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 280 (35):31182–31189
CrossRef
Google scholar
|
[9] |
Dittmann K, Mayer C, Rodemann HP(2005b) Inhibition of radiationinduced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol 76(2):157–161
CrossRef
Google scholar
|
[10] |
Dittmann K, Mayer C, Kehlbach R, Rodemann HP(2008) Radiationinduced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer 7:69
CrossRef
Google scholar
|
[11] |
Dong RF, Zhu ML, Liu MM, Xu YT, Yuan LL, Bian J, Xia YZ, Kong LY(2021) EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: from molecular mechanisms to clinical research. Pharmacol Res 167:105583
CrossRef
Google scholar
|
[12] |
Dungo RT, Keating GM(2013) Afatinib: first global approval. Drugs 73(13):1503–1515
CrossRef
Google scholar
|
[13] |
El Kadi N, Wang L, Davis A, Korkaya H, Cooke A, Vadnala V, Brown NA, Betz BL, Cascalho M, Kalemkerian GP
CrossRef
Google scholar
|
[14] |
El-Hashim AZ, Khajah MA, Renno WM, Babyson RS, Uddin M, Benter IF, Ezeamuzie C, Akhtar S(2017) Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model. Sci Rep 7(1):9919
CrossRef
Google scholar
|
[15] |
Genova C, Rijavec E, Barletta G, Burrafato G, Biello F, Dal Bello MG, Coco S, Truini A, Alama A, Boccardo F
CrossRef
Google scholar
|
[16] |
Greig SL(2016) Osimertinib: first global approval. Drugs 76(2):263–273
CrossRef
Google scholar
|
[17] |
Haradhvala NJ, Kim J, Maruvka YE, Polak P, Rosebrock D, Livitz D, Hess JM, Leshchiner I, Kamburov A, Mouw KW
CrossRef
Google scholar
|
[18] |
Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, Maruvka YE, Ji F, Bhang HE, Krishnamurthy Radhakrishna V
CrossRef
Google scholar
|
[19] |
Jin R, Zhao J, Xia L, Li Q, Li W, Peng L, Xia Y(2020) Application of immune checkpoint inhibitors in EGFR-mutant non-small-cell lung cancer: from bed to bench. Ther Adv Med Oncol 12:1758835920930333
CrossRef
Google scholar
|
[20] |
Johnson DB, Rioth MJ, Horn L(2014) Immune checkpoint inhibitors in NSCLC. Curr Treat Options Oncol 15(4):658–669
CrossRef
Google scholar
|
[21] |
Kim Y, Ko J, Cui Z, Abolhoda A, Ahn JS, Ou SH, Ahn MJ, Park K(2012) The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol Cancer Ther 11(3):784–791
CrossRef
Google scholar
|
[22] |
Lemmon MA, Schlessinger J, Ferguson KM(2014) The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 6(4):a020768
CrossRef
Google scholar
|
[23] |
Li Z, Liu B, Jin W, Wu X, Zhou M, Liu VZ, Goel A, Shen Z, Zheng L, Shen B(2018) hDNA2 Nuclease/helicase promotes centromeric DNA replication and genome stability. EMBO J 37(14)
CrossRef
Google scholar
|
[24] |
Lo YH, Ho PC, Wang SC(2012) Epidermal growth factor receptor protects proliferating cell nuclear antigen from cullin 4A proteinmediated proteolysis. J Biol Chem 287(32):27148–27157
CrossRef
Google scholar
|
[25] |
Ludmann S, Marx A(2016) Getting it right: how DNA polymerases select the right nucleotide. Chimia (Aarau) 70(3):203–206
CrossRef
Google scholar
|
[26] |
Ma C, Wei S, Song Y(2011) T790M and acquired resistance of EGFR TKI: a literature review of clinical reports. J Thorac Dis 3 (1):10–18
|
[27] |
Majem M, Remon J(2013) Tumor heterogeneity: evolution through space and time in EGFR mutant non small cell lung cancer patients. Transl Lung Cancer Res 2(3):226–237
|
[28] |
Markham A(2020) Tepotinib: first approval. Drugs 80(8):829–833
CrossRef
Google scholar
|
[29] |
Mehlman C, Cadranel J, Rousseau-Bussac G, Lacave R, Pujals A, Girard N, Callens C, Gounant V, Théou-Anton N, Friard S
CrossRef
Google scholar
|
[30] |
Moldovan GL, Pfander B, Jentsch S(2007) PCNA, the maestro of the replication fork. Cell 129(4):665–679
CrossRef
Google scholar
|
[31] |
Molina-Vila MA, Bertran-Alamillo J, Mayo C, Rosell R(2009) Screening for EGFR mutations in lung cancer. Discov Med 8 (43):181–184
|
[32] |
Moy B, Kirkpatrick P, Kar S, Goss P(2007) Lapatinib. Nat Rev Drug Discov 6(6):431–432
CrossRef
Google scholar
|
[33] |
Muhsin M, Graham J, Kirkpatrick P(2003) Gefitinib. Nat Rev Drug Discov 2(7):515–516
CrossRef
Google scholar
|
[34] |
Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, Eskin A, Hwang K, Wang J, Masui K
CrossRef
Google scholar
|
[35] |
Ou SI, Agarwal N, Ali SM(2016) High MET amplification level as a resistance mechanism to osimertinib (AZD9291) in a patient that symptomatically responded to crizotinib treatment post-osimertinib progression. Lung Cancer 98:59–61
CrossRef
Google scholar
|
[36] |
Reckamp KL, Frankel PH, Ruel N, Mack PC, Gitlitz BJ, Li T, Koczywas M, Gadgeel SM, Cristea MC, Belani CP
CrossRef
Google scholar
|
[37] |
Rotow JK, Gui P, Wu W, Raymond VM, Lanman RB, Kaye FJ, Peled N, Fece de la Cruz F, Nadres B, Corcoran RB
CrossRef
Google scholar
|
[38] |
Sequist LV, Besse B, Lynch TJ, Miller VA, Wong KK, Gitlitz B, Eaton K, Zacharchuk C, Freyman A, Powell C
CrossRef
Google scholar
|
[39] |
Shi Y, Zhang L, Liu X, Zhou C, Zhang S, Wang D, Li Q, Qin S, Hu C, Zhang Y
CrossRef
Google scholar
|
[40] |
Taniguchi H, Yamada T, Wang R, Tanimura K, Adachi Y, Nishiyama A, Tanimoto A, Takeuchi S, Araujo LH, Boroni M
CrossRef
Google scholar
|
[41] |
Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson DA
CrossRef
Google scholar
|
[42] |
Vendetti FP, Lau A, Schamus S, Conrads TP, O’Connor MJ, Bakkenist CJ(2015) The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 6(42):44289–44305
CrossRef
Google scholar
|
[43] |
Wang SC, Hung MC(2009) Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res 15(21):6484–6489
CrossRef
Google scholar
|
[44] |
Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC, McIntush EW, Li LY, Hawke DH, Kobayashi R
CrossRef
Google scholar
|
[45] |
Wang YN, Lee HH, Lee HJ, Du Y, Yamaguchi H, Hung MC(2012) Membrane-bound trafficking regulates nuclear transport of integral epidermal growth factor receptor (EGFR) and ErbB-2. J Biol Chem 287(20):16869–16879
CrossRef
Google scholar
|
[46] |
Wang YN, Wang H, Yamaguchi H, Lee HJ, Lee HH, Hung MC(2010) COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun 399(4):498–504
CrossRef
Google scholar
|
[47] |
Watanabe M, Kawaguchi T, Isa S, Ando M, Tamiya A, Kubo A, Saka H, Takeo S, Adachi H, Tagawa T
CrossRef
Google scholar
|
[48] |
Waters KM, Liu T, Quesenberry RD, Willse AR, Bandyopadhyay S, Kathmann LE, Weber TJ, Smith RD, Wiley HS, Thrall BD (2012) Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data. PLoS ONE 7(3):e34515
CrossRef
Google scholar
|
[49] |
Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, Tsuji F, Linke R, Rosell R, Corral J
CrossRef
Google scholar
|
[50] |
Xing X, Kane DP, Bulock CR, Moore EA, Sharma S, Chabes A, Shcherbakova PV (2019) A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat Commun 10(1):374
CrossRef
Google scholar
|
[51] |
Yu D, Zhao W, Vallega KA, Sun SY(2021) Managing acquired resistance to third-generation EGFR tyrosine kinase inhibitors through co-targeting MEK/ERK signaling. Lung Cancer (Auckl) 12:1–10
CrossRef
Google scholar
|
[52] |
Zhang H(2016a) Osimertinib making a breakthrough in lung cancer targeted therapy. Onco Targets Ther 9:5489–5493
CrossRef
Google scholar
|
[53] |
Zhang H(2016b) Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer. Drug Des Devel Ther 10:3867–3872
CrossRef
Google scholar
|
[54] |
Zheng L, Shen B(2011) Okazaki fragment maturation: nucleases take centre stage. J Mol Cell Biol 3(1):23–30
CrossRef
Google scholar
|
[55] |
Zheng L, Meng Y, Campbell JL, Shen B (2020) Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Res 48(1):16–35
CrossRef
Google scholar
|
/
〈 | 〉 |