Single-nucleus transcriptomic landscape of primate hippocampal aging

Hui Zhang, Jiaming Li, Jie Ren, Shuhui Sun, Shuai Ma, Weiqi Zhang, Yang Yu, Yusheng Cai, Kaowen Yan, Wei Li, Baoyang Hu, Piu Chan, Guo-Guang Zhao, Juan Carlos Izpisua Belmonte, Qi Zhou, Jing Qu, Si Wang, Guang-Hui Liu

PDF(3408 KB)
PDF(3408 KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (9) : 695-716. DOI: 10.1007/s13238-021-00852-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Single-nucleus transcriptomic landscape of primate hippocampal aging

Author information +
History +

Abstract

The hippocampus plays a crucial role in learning and memory, and its progressive deteriorationwith age is functionally linked to a variety ofhuman neurodegenerative diseases.Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal unction along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the agedmicroglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.

Keywords

aging / hippocampus / primate / single-cell RNA sequencing

Cite this article

Download citation ▾
Hui Zhang, Jiaming Li, Jie Ren, Shuhui Sun, Shuai Ma, Weiqi Zhang, Yang Yu, Yusheng Cai, Kaowen Yan, Wei Li, Baoyang Hu, Piu Chan, Guo-Guang Zhao, Juan Carlos Izpisua Belmonte, Qi Zhou, Jing Qu, Si Wang, Guang-Hui Liu. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell, 2021, 12(9): 695‒716 https://doi.org/10.1007/s13238-021-00852-9

References

[1]
Aging Atlas C (2021) Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 49:D825–D830
CrossRef Google scholar
[2]
Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine J-C, Geurts P, Aerts J (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086
CrossRef Google scholar
[3]
Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026
CrossRef Google scholar
[4]
Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM (2019) An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 10:963
CrossRef Google scholar
[5]
Artegiani B, Lyubimova A, Muraro M, van Es JH, van Oudenaarden A, Clevers H (2017) A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep 21:3271–3284
CrossRef Google scholar
[6]
Baird GS, Nelson SK, Keeney TR, Stewart A, Williams S, Kraemer S, Peskind ER, Montine TJ (2012) Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol 180:446–456
CrossRef Google scholar
[7]
Baker DJ, Petersen RC (2018) Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Investig 128:1208–1216
CrossRef Google scholar
[8]
Bedrosian TA, Houtman J, Eguiguren JS, Ghassemzadeh S, Rund N, Novaresi NM, Hu L, Parylak SL, Denli AM, Randolph-Moore L(2021) Lamin B1 decline underlies age-related loss of adult hippocampal neurogenesis. EMBO J 40:e105819
CrossRef Google scholar
[9]
Bengoa-Vergniory N, Kypta RM (2015) Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 72:4157–4172
CrossRef Google scholar
[10]
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M (2020) SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11:483–504
CrossRef Google scholar
[11]
Bin Imtiaz MK, Jaeger BN, Bottes S, Machado RAC, Vidmar M, Moore DL, Jessberger S (2021) Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell.https://doi.org/10.1016/j.stem.2021.01. 015
CrossRef Google scholar
[12]
Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(589–599):e585
CrossRef Google scholar
[13]
Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging. Eur J Biochem 269:1996–2002
CrossRef Google scholar
[14]
Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G (2008) Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol Neurodegener 3:13
CrossRef Google scholar
[15]
Buchwalter A, Kaneshiro JM, Hetzer MW (2019) Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 20:39–50
CrossRef Google scholar
[16]
Buckig A, Tikkanen R, Herzog V, Schmitz A (2002) Cytosolic and nuclear aggregation of the amyloid beta-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 118:353–360
CrossRef Google scholar
[17]
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420
CrossRef Google scholar
[18]
Chen Y, Niu Y, Ji W(2012) Transgenic nonhuman primate models for human diseases: approaches and contributing factors. J Genet Genom 39:247–251
CrossRef Google scholar
[19]
Chen Y, Niu Y, Ji W (2016) Genome editing in nonhuman primates: approach to generating human disease models. J Intern Med 280:246–251
CrossRef Google scholar
[20]
Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G, Hu Y, Wang J, Lu Y, Kang Y (2017) Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell 169(945–955):
CrossRef Google scholar
[21]
Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, Qian X, Lalakova J, Kuhnemund M, Voytyuk I (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182(976–991):e919
CrossRef Google scholar
[22]
Chow HM, Shi M, Cheng A, Gao Y, Chen G, Song X, So RWL, Zhang J, Herrup K (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819
CrossRef Google scholar
[23]
Colman RJ (2018) Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 1864:2733–2741
CrossRef Google scholar
[24]
Costa-Mattioli M, Walter P (2020) The integrated stress response: from mechanism to disease. Science 368:eaat5314
CrossRef Google scholar
[25]
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD(2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
CrossRef Google scholar
[26]
Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806
CrossRef Google scholar
[27]
Deng L, Ren R, Liu Z, Song M, Li J, Wu Z, Ren X, Fu L, Li W, Zhang W(2019) Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun 10:3329
CrossRef Google scholar
[28]
Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, Hu J, Liu Z, Wang Q, Bi S (2021) SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 49:4203–4219
CrossRef Google scholar
[29]
Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP (2015) Autophagy mediates degradation of nuclear lamina. Nature 527:105–109
CrossRef Google scholar
[30]
Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R, Leeman DS, George BM, Boutet SC, Hebestreit K, Pluvinage JV (2019) Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571:205–210
CrossRef Google scholar
[31]
Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R (2020) Cell PhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protoc 15:1484–1506
CrossRef Google scholar
[32]
Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A, Enikolopov G (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–579
CrossRef Google scholar
[33]
Fan X, Wheatley EG, Villeda SA (2017) Mechanisms of hippocampal aging and the potential for rejuvenation. Annu Rev Neurosci 40:251–272
CrossRef Google scholar
[34]
Frost B (2016) Alzheimer’s disease: an acquired neurodegenerative laminopathy. Nucleus 7:275–283
CrossRef Google scholar
[35]
Geng L, Liu Z, Wang S, Sun S, Ma S, Liu X, Chan P, Sun L, Song M, Zhang W (2019) Low-dose quercetin positively regulates mouse healthspan. Protein Cell 10:770–775
CrossRef Google scholar
[36]
Geutskens SB, Hordijk PL, van Hennik PB (2010) The chemorepellent Slit3 promotes monocyte migration. J Immunol 185:7691–7698
CrossRef Google scholar
[37]
Giacobini E, Gold G (2013) Alzheimer disease therapy–moving from amyloid-beta to tau. Nat Rev Neurol 9:677–686
CrossRef Google scholar
[38]
Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, Kwan JM, Krause DS, Lee AI, Halene S(2021) Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 18:194–209
CrossRef Google scholar
[39]
Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, Yeung C, Liles WC, Wurfel M, Lopez JA (2017) Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7:1404–1419
CrossRef Google scholar
[40]
Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I, Trombetta JJ, Hession C, Zhang F, Regev A (2016) Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353:925–928
CrossRef Google scholar
[41]
Harris L, Genovesi LA, Gronostajski RM, Wainwright BJ, Piper M (2015) Nuclear factor one transcription factors: divergent functions in developmental versus adult stem cell populations. Dev Dyn 244:227–238
CrossRef Google scholar
[42]
He G, Luo W, Li P, Remmers C, Netzer WJ, Hendrick J, Bettayeb K, Flajolet M, Gorelick F, Wennogle LP (2010) Gammasecretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 467:95–98
CrossRef Google scholar
[43]
He X, Memczak S, Qu J, Belmonte JCI, Liu GH (2020) Single-cell omics in ageing: a young and growing field. Nat Metab 2:293–302
CrossRef Google scholar
[44]
Head D, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Frontal-hippocampal double dissociation between normal aging and Alzheimer’s disease. Cereb Cortex 15:732–739
CrossRef Google scholar
[45]
Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31
CrossRef Google scholar
[46]
Hoppe B, Dorner T (2012) Coagulation and the fibrin network in rheumatic disease: a role beyond haemostasis. Nat Rev Rheumatol 8:738–746
CrossRef Google scholar
[47]
Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581
CrossRef Google scholar
[48]
Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, Liu X, Yan K, Hu J, Jing Y (2020) ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res 48:6001–6018
CrossRef Google scholar
[49]
Hwang IK, Park JH, Lee TK, Kim DW, Yoo KY, Ahn JH, Kim YH, Cho JH, Kim YM, Won MH (2017) CD74-immunoreactive activated M1 microglia are shown late in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 15:4148–4154
CrossRef Google scholar
[50]
Ibrayeva A, Bay M, Pu E, Jorg DJ, Peng L, Jun H, Zhang N, Aaron D, Lin C, Resler G (2021) Early stem cell aging in the mature brain. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.03.018
CrossRef Google scholar
[51]
Jin WN, Shi K, He W, Sun JH, Van Kaer L, Shi FD, Liu Q (2021) Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat Neurosci 24:61–73
CrossRef Google scholar
[52]
Kempermann G, Song H, Gage FH (2015) Neurogenesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol 7:a018812
CrossRef Google scholar
[53]
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290
CrossRef Google scholar
[54]
Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S, Erwin JA, Miller JA (2016) Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 11:499–524
CrossRef Google scholar
[55]
Kruithof EK, Dunoyer-Geindre S (2014) Human tissue-type plasminogen activator. Thromb Haemost 112:243–254
CrossRef Google scholar
[56]
Kuhn HG, Toda T, Gage FH (2018) Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci 38:10401–10410
CrossRef Google scholar
[57]
Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172
CrossRef Google scholar
[58]
Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA 104:17169–17173
CrossRef Google scholar
[59]
Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J, Robinson GO, Anderson E, Colonna M, Holtzman DM (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci USA 114:11524–11529
CrossRef Google scholar
[60]
Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H(2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA 101:3632–3637
CrossRef Google scholar
[61]
Li D, Takeda N, Jain R, Manderfield LJ, Liu F, Li L, Anderson SA, Epstein JA (2015) Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res 15:522–529
CrossRef Google scholar
[62]
Li J, Zheng Y, Yan P, Song M, Wang S, Sun L, Liu Z, Ma S, Belmonte JCI, Chan P(2020) A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl Sci Rev 8(2):127
CrossRef Google scholar
[63]
Liang C, Liu Z, Song M, Li W, Wu Z, Wang Z, Wang Q, Wang S, Yan K, Sun L(2021) Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 31:187–205
CrossRef Google scholar
[64]
Linnartz-Gerlach B, Bodea LG, Klaus C, Ginolhac A, Halder R, Sinkkonen L, Walter J, Colonna M, Neumann H (2019) TREM2 triggers microglial density and age-related neuronal loss. Glia 67:539–550
CrossRef Google scholar
[65]
Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W(2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607
CrossRef Google scholar
[66]
Liu X, Liu Z, Sun L, Ren J, Wu Z, Jiang X, Ji Q, Wang Q,Fan Y, Cai Y (2021) Resurrection of human endogenous retroviruses during aging reinforces senescence. bioRxiv. https://doi.org/10. 1101/2021.02.22.432260v1.abstract
[67]
Lubbe SJ, Bustos B, Hu J, Krainc D, Joseph T, Hehir J, Tan M, Zhang W, Escott-Price V, Williams NM(2021) Assessing the relationship between monoallelic PRKN mutations and Parkinson’s risk. Human Mol Genet 30:78–86
CrossRef Google scholar
[68]
Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X (2020a) Caloric restriction reprograms the single-cell transcriptional landscape of rattus norvegicus aging. Cell 180 (984–1001):e1022
CrossRef Google scholar
[69]
Ma S, Sun S, Li J, Fan Y, Qu J, Sun L, Wang S, Zhang Y, Yang S, Liu Z (2020b) Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res 31(4):415–432
CrossRef Google scholar
[70]
Malykhin NV, Bouchard TP, Camicioli R, Coupland NJ (2008) Aging hippocampus and amygdala. NeuroReport 19:543–547
CrossRef Google scholar
[71]
Marcos-Contreras OA, Martinez deLizarrondo S, Bardou I, Orset C, Pruvost M, Anfray A, Frigout Y, Hommet Y, Lebouvier L, Montaner J (2016) Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood 128:2423–2434
CrossRef Google scholar
[72]
Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329
CrossRef Google scholar
[73]
Martinelli P, Real FX (2019) Mouse models shed light on the SLIT/ ROBO pathway in pancreatic development and cancer. Trends Cancer 5:145–148
CrossRef Google scholar
[74]
Mauffrey P, Tchitchek N, Barroca V, Bemelmans A-P, Firlej V, Allory Y, Roméo P-H, Magnon C (2019) Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569:672–678
CrossRef Google scholar
[75]
McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:329–337.e324
CrossRef Google scholar
[76]
Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250
CrossRef Google scholar
[77]
Nakamura R, Nakamoto C, Obama H, Durward E, Nakamoto M (2012) Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions. J Biol Chem 287:3282–3291
CrossRef Google scholar
[78]
Navarro Negredo P, Yeo RW, Brunet A (2020) Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27:202–223
CrossRef Google scholar
[79]
Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736
CrossRef Google scholar
[80]
Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783
CrossRef Google scholar
[81]
Rivero O, Sich S, Popp S, Schmitt A, Franke B, Lesch KP (2013) Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 23:492–507
CrossRef Google scholar
[82]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
CrossRef Google scholar
[83]
Shi Z, Geng Y, Liu J, Zhang H, Zhou L, Lin Q, Yu J, Zhang K, Liu J, Gao X (2018) Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations. Protein Cell 9:351–364
CrossRef Google scholar
[84]
Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T, De Cecco M, Leonova KI, Kogan V, Helfand SL (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29:871–885
CrossRef Google scholar
[85]
Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82
CrossRef Google scholar
[86]
Su H, Na N, Zhang X, Zhao Y (2017) The biological function and significance of CD74 in immune diseases. Inflamm Res 66:209–216
CrossRef Google scholar
[87]
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545
CrossRef Google scholar
[88]
Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150
CrossRef Google scholar
[89]
Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G(2018) Plasma proteomic signature of age in healthy humans. Aging Cell 17:
CrossRef Google scholar
[90]
Tiensuu H, Haapalainen AM, Karjalainen MK, Pasanen A, Huusko JM, Marttila R, Ojaniemi M, Muglia LJ, Hallman M, Ramet M (2019) Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 15:e1008107
CrossRef Google scholar
[91]
Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NFkappaB in aging and disease. Aging Dis 2:449–465
[92]
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386
CrossRef Google scholar
[93]
Ulland TK, Colonna M (2018) TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675
CrossRef Google scholar
[94]
Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480
CrossRef Google scholar
[95]
Végh MJ, Rausell A, Loos M, Heldring CM, Jurkowski W, van Nierop P, Paliukhovich I, Li KW, del ASol AB, Smit (2014) Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol Cell Proteom 13:2975–2985
CrossRef Google scholar
[96]
Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422
CrossRef Google scholar
[97]
Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, Yang M, Bai X, Pang Y, Yu J (2017) PADI2-mediated citrullination promotes prostate cancer progression. Cancer Res 77:5755–5768
CrossRef Google scholar
[98]
Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M, Liu Z, Min Z, Hu H, Jing Y(2020a) Single-cell transcriptomic atlas of primate ovarian aging. Cell 180(585–600):e519
CrossRef Google scholar
[99]
Wang S, Zheng Y, Li Q, He X, Ren R, Zhang W, Song M, Hu H, Liu F, Sun G(2020b) Deciphering primate retinal aging at singlecell resolution. Protein Cell. https://doi.org/10.1007/s13238-020-00791-x
CrossRef Google scholar
[100]
Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M, Brown WT, Kuchna I, Wegiel J, Nowicki K(2012) Abnormal intracellular accumulation and extracellular Abeta deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 7:e35414
CrossRef Google scholar
[101]
Woo MS, Ufer F, Rothammer N, Di Liberto G, Binkle L, Haferkamp U, Sonner JK, Engler JB, Hornig S, Bauer S (2021) Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J Exp Med. https://doi.org/10.1084/jem.20201290
CrossRef Google scholar
[102]
Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186
CrossRef Google scholar
[103]
Yang X, Goh A, Chen SH, Qiu A (2013) Evolution of hippocampal shapes across the human lifespan. Hum Brain Mapp 34:3075–3085
CrossRef Google scholar
[104]
Yang AC, Stevens MY, Chen MB, Lee DP, Stahli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L (2020) Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583:425–430
CrossRef Google scholar
[105]
Young MD, Behjati S (2020) SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9:giaa151
CrossRef Google scholar
[106]
Yu HC, Tung CH, Huang KY, Huang HB, Lu MC (2020) The essential role of peptidylarginine deiminases 2 for cytokines secretion, apoptosis, and cell adhesion in macrophage. Int J Mol Sci 21:5720
CrossRef Google scholar
[107]
Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33
CrossRef Google scholar
[108]
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J (2019) Variants in nuclear factor I genes influence growth and development. Am J Med Genet C Semin Med Genet 181:611–626
CrossRef Google scholar
[109]
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163
CrossRef Google scholar
[110]
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
CrossRef Google scholar
[111]
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS (2020a) The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell. https://doi.org/10.1007/s13238-020-00812-9
CrossRef Google scholar
[112]
Zhang W, Qu J, Liu GH, Belmonte JCI (2020b) The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 21:137–150
CrossRef Google scholar
[113]
Zhang W, Zhang S, Yan P, Ren J, Song M, Li J, Lei J, Pan H, Wang S, Ma X (2020c) A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 11:2202
CrossRef Google scholar
[114]
Zhong S, Ding W, Sun L, Lu Y, Dong H, Fan X, Liu Z, Chen R, Zhang S, Ma Q(2020) Decoding the development of the human hippocampus. Nature 577:531–536
CrossRef Google scholar
[115]
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 10:1523
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(3408 KB)

Accesses

Citations

Detail

Sections
Recommended

/