Single-nucleus transcriptomic landscape of primate hippocampal aging
Hui Zhang, Jiaming Li, Jie Ren, Shuhui Sun, Shuai Ma, Weiqi Zhang, Yang Yu, Yusheng Cai, Kaowen Yan, Wei Li, Baoyang Hu, Piu Chan, Guo-Guang Zhao, Juan Carlos Izpisua Belmonte, Qi Zhou, Jing Qu, Si Wang, Guang-Hui Liu
Single-nucleus transcriptomic landscape of primate hippocampal aging
The hippocampus plays a crucial role in learning and memory, and its progressive deteriorationwith age is functionally linked to a variety ofhuman neurodegenerative diseases.Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal unction along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the agedmicroglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
aging / hippocampus / primate / single-cell RNA sequencing
[1] |
Aging Atlas C (2021) Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 49:D825–D830
CrossRef
Google scholar
|
[2] |
Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine J-C, Geurts P, Aerts J
CrossRef
Google scholar
|
[3] |
Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026
CrossRef
Google scholar
|
[4] |
Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM
CrossRef
Google scholar
|
[5] |
Artegiani B, Lyubimova A, Muraro M, van Es JH, van Oudenaarden A, Clevers H (2017) A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep 21:3271–3284
CrossRef
Google scholar
|
[6] |
Baird GS, Nelson SK, Keeney TR, Stewart A, Williams S, Kraemer S, Peskind ER, Montine TJ (2012) Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol 180:446–456
CrossRef
Google scholar
|
[7] |
Baker DJ, Petersen RC (2018) Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Investig 128:1208–1216
CrossRef
Google scholar
|
[8] |
Bedrosian TA, Houtman J, Eguiguren JS, Ghassemzadeh S, Rund N, Novaresi NM, Hu L, Parylak SL, Denli AM, Randolph-Moore L
CrossRef
Google scholar
|
[9] |
Bengoa-Vergniory N, Kypta RM (2015) Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 72:4157–4172
CrossRef
Google scholar
|
[10] |
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M
CrossRef
Google scholar
|
[11] |
Bin Imtiaz MK, Jaeger BN, Bottes S, Machado RAC, Vidmar M, Moore DL, Jessberger S (2021) Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell.
CrossRef
Google scholar
|
[12] |
Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ
CrossRef
Google scholar
|
[13] |
Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging. Eur J Biochem 269:1996–2002
CrossRef
Google scholar
|
[14] |
Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G (2008) Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol Neurodegener 3:13
CrossRef
Google scholar
|
[15] |
Buchwalter A, Kaneshiro JM, Hetzer MW (2019) Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 20:39–50
CrossRef
Google scholar
|
[16] |
Buckig A, Tikkanen R, Herzog V, Schmitz A (2002) Cytosolic and nuclear aggregation of the amyloid beta-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 118:353–360
CrossRef
Google scholar
|
[17] |
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420
CrossRef
Google scholar
|
[18] |
Chen Y, Niu Y, Ji W(2012) Transgenic nonhuman primate models for human diseases: approaches and contributing factors. J Genet Genom 39:247–251
CrossRef
Google scholar
|
[19] |
Chen Y, Niu Y, Ji W (2016) Genome editing in nonhuman primates: approach to generating human disease models. J Intern Med 280:246–251
CrossRef
Google scholar
|
[20] |
Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G, Hu Y, Wang J, Lu Y, Kang Y
CrossRef
Google scholar
|
[21] |
Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, Qian X, Lalakova J, Kuhnemund M, Voytyuk I
CrossRef
Google scholar
|
[22] |
Chow HM, Shi M, Cheng A, Gao Y, Chen G, Song X, So RWL, Zhang J, Herrup K (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819
CrossRef
Google scholar
|
[23] |
Colman RJ (2018) Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 1864:2733–2741
CrossRef
Google scholar
|
[24] |
Costa-Mattioli M, Walter P (2020) The integrated stress response: from mechanism to disease. Science 368:eaat5314
CrossRef
Google scholar
|
[25] |
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD
CrossRef
Google scholar
|
[26] |
Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806
CrossRef
Google scholar
|
[27] |
Deng L, Ren R, Liu Z, Song M, Li J, Wu Z, Ren X, Fu L, Li W, Zhang W
CrossRef
Google scholar
|
[28] |
Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, Hu J, Liu Z, Wang Q, Bi S
CrossRef
Google scholar
|
[29] |
Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP
CrossRef
Google scholar
|
[30] |
Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R, Leeman DS, George BM, Boutet SC, Hebestreit K, Pluvinage JV
CrossRef
Google scholar
|
[31] |
Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R (2020) Cell PhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protoc 15:1484–1506
CrossRef
Google scholar
|
[32] |
Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A, Enikolopov G (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–579
CrossRef
Google scholar
|
[33] |
Fan X, Wheatley EG, Villeda SA (2017) Mechanisms of hippocampal aging and the potential for rejuvenation. Annu Rev Neurosci 40:251–272
CrossRef
Google scholar
|
[34] |
Frost B (2016) Alzheimer’s disease: an acquired neurodegenerative laminopathy. Nucleus 7:275–283
CrossRef
Google scholar
|
[35] |
Geng L, Liu Z, Wang S, Sun S, Ma S, Liu X, Chan P, Sun L, Song M, Zhang W
CrossRef
Google scholar
|
[36] |
Geutskens SB, Hordijk PL, van Hennik PB (2010) The chemorepellent Slit3 promotes monocyte migration. J Immunol 185:7691–7698
CrossRef
Google scholar
|
[37] |
Giacobini E, Gold G (2013) Alzheimer disease therapy–moving from amyloid-beta to tau. Nat Rev Neurol 9:677–686
CrossRef
Google scholar
|
[38] |
Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, Kwan JM, Krause DS, Lee AI, Halene S
CrossRef
Google scholar
|
[39] |
Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, Yeung C, Liles WC, Wurfel M, Lopez JA
CrossRef
Google scholar
|
[40] |
Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I, Trombetta JJ, Hession C, Zhang F, Regev A (2016) Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353:925–928
CrossRef
Google scholar
|
[41] |
Harris L, Genovesi LA, Gronostajski RM, Wainwright BJ, Piper M (2015) Nuclear factor one transcription factors: divergent functions in developmental versus adult stem cell populations. Dev Dyn 244:227–238
CrossRef
Google scholar
|
[42] |
He G, Luo W, Li P, Remmers C, Netzer WJ, Hendrick J, Bettayeb K, Flajolet M, Gorelick F, Wennogle LP
CrossRef
Google scholar
|
[43] |
He X, Memczak S, Qu J, Belmonte JCI, Liu GH (2020) Single-cell omics in ageing: a young and growing field. Nat Metab 2:293–302
CrossRef
Google scholar
|
[44] |
Head D, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Frontal-hippocampal double dissociation between normal aging and Alzheimer’s disease. Cereb Cortex 15:732–739
CrossRef
Google scholar
|
[45] |
Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31
CrossRef
Google scholar
|
[46] |
Hoppe B, Dorner T (2012) Coagulation and the fibrin network in rheumatic disease: a role beyond haemostasis. Nat Rev Rheumatol 8:738–746
CrossRef
Google scholar
|
[47] |
Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581
CrossRef
Google scholar
|
[48] |
Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, Liu X, Yan K, Hu J, Jing Y
CrossRef
Google scholar
|
[49] |
Hwang IK, Park JH, Lee TK, Kim DW, Yoo KY, Ahn JH, Kim YH, Cho JH, Kim YM, Won MH
CrossRef
Google scholar
|
[50] |
Ibrayeva A, Bay M, Pu E, Jorg DJ, Peng L, Jun H, Zhang N, Aaron D, Lin C, Resler G
CrossRef
Google scholar
|
[51] |
Jin WN, Shi K, He W, Sun JH, Van Kaer L, Shi FD, Liu Q (2021) Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat Neurosci 24:61–73
CrossRef
Google scholar
|
[52] |
Kempermann G, Song H, Gage FH (2015) Neurogenesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol 7:a018812
CrossRef
Google scholar
|
[53] |
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B
CrossRef
Google scholar
|
[54] |
Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S, Erwin JA, Miller JA
CrossRef
Google scholar
|
[55] |
Kruithof EK, Dunoyer-Geindre S (2014) Human tissue-type plasminogen activator. Thromb Haemost 112:243–254
CrossRef
Google scholar
|
[56] |
Kuhn HG, Toda T, Gage FH (2018) Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci 38:10401–10410
CrossRef
Google scholar
|
[57] |
Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172
CrossRef
Google scholar
|
[58] |
Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA 104:17169–17173
CrossRef
Google scholar
|
[59] |
Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J, Robinson GO, Anderson E, Colonna M, Holtzman DM (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci USA 114:11524–11529
CrossRef
Google scholar
|
[60] |
Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H
CrossRef
Google scholar
|
[61] |
Li D, Takeda N, Jain R, Manderfield LJ, Liu F, Li L, Anderson SA, Epstein JA (2015) Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res 15:522–529
CrossRef
Google scholar
|
[62] |
Li J, Zheng Y, Yan P, Song M, Wang S, Sun L, Liu Z, Ma S, Belmonte JCI, Chan P
CrossRef
Google scholar
|
[63] |
Liang C, Liu Z, Song M, Li W, Wu Z, Wang Z, Wang Q, Wang S, Yan K, Sun L
CrossRef
Google scholar
|
[64] |
Linnartz-Gerlach B, Bodea LG, Klaus C, Ginolhac A, Halder R, Sinkkonen L, Walter J, Colonna M, Neumann H (2019) TREM2 triggers microglial density and age-related neuronal loss. Glia 67:539–550
CrossRef
Google scholar
|
[65] |
Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W
CrossRef
Google scholar
|
[66] |
Liu X, Liu Z, Sun L, Ren J, Wu Z, Jiang X, Ji Q, Wang Q,Fan Y, Cai Y
|
[67] |
Lubbe SJ, Bustos B, Hu J, Krainc D, Joseph T, Hehir J, Tan M, Zhang W, Escott-Price V, Williams NM
CrossRef
Google scholar
|
[68] |
Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X
CrossRef
Google scholar
|
[69] |
Ma S, Sun S, Li J, Fan Y, Qu J, Sun L, Wang S, Zhang Y, Yang S, Liu Z
CrossRef
Google scholar
|
[70] |
Malykhin NV, Bouchard TP, Camicioli R, Coupland NJ (2008) Aging hippocampus and amygdala. NeuroReport 19:543–547
CrossRef
Google scholar
|
[71] |
Marcos-Contreras OA, Martinez deLizarrondo S, Bardou I, Orset C, Pruvost M, Anfray A, Frigout Y, Hommet Y, Lebouvier L, Montaner J
CrossRef
Google scholar
|
[72] |
Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA
CrossRef
Google scholar
|
[73] |
Martinelli P, Real FX (2019) Mouse models shed light on the SLIT/ ROBO pathway in pancreatic development and cancer. Trends Cancer 5:145–148
CrossRef
Google scholar
|
[74] |
Mauffrey P, Tchitchek N, Barroca V, Bemelmans A-P, Firlej V, Allory Y, Roméo P-H, Magnon C (2019) Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569:672–678
CrossRef
Google scholar
|
[75] |
McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:329–337.e324
CrossRef
Google scholar
|
[76] |
Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250
CrossRef
Google scholar
|
[77] |
Nakamura R, Nakamoto C, Obama H, Durward E, Nakamoto M (2012) Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions. J Biol Chem 287:3282–3291
CrossRef
Google scholar
|
[78] |
Navarro Negredo P, Yeo RW, Brunet A (2020) Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27:202–223
CrossRef
Google scholar
|
[79] |
Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736
CrossRef
Google scholar
|
[80] |
Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783
CrossRef
Google scholar
|
[81] |
Rivero O, Sich S, Popp S, Schmitt A, Franke B, Lesch KP (2013) Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 23:492–507
CrossRef
Google scholar
|
[82] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
CrossRef
Google scholar
|
[83] |
Shi Z, Geng Y, Liu J, Zhang H, Zhou L, Lin Q, Yu J, Zhang K, Liu J, Gao X
CrossRef
Google scholar
|
[84] |
Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T, De Cecco M, Leonova KI, Kogan V, Helfand SL
CrossRef
Google scholar
|
[85] |
Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M
CrossRef
Google scholar
|
[86] |
Su H, Na N, Zhang X, Zhao Y (2017) The biological function and significance of CD74 in immune diseases. Inflamm Res 66:209–216
CrossRef
Google scholar
|
[87] |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES
CrossRef
Google scholar
|
[88] |
Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150
CrossRef
Google scholar
|
[89] |
Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G
CrossRef
Google scholar
|
[90] |
Tiensuu H, Haapalainen AM, Karjalainen MK, Pasanen A, Huusko JM, Marttila R, Ojaniemi M, Muglia LJ, Hallman M, Ramet M (2019) Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 15:e1008107
CrossRef
Google scholar
|
[91] |
Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NFkappaB in aging and disease. Aging Dis 2:449–465
|
[92] |
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386
CrossRef
Google scholar
|
[93] |
Ulland TK, Colonna M (2018) TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675
CrossRef
Google scholar
|
[94] |
Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L
CrossRef
Google scholar
|
[95] |
Végh MJ, Rausell A, Loos M, Heldring CM, Jurkowski W, van Nierop P, Paliukhovich I, Li KW, del ASol AB, Smit
CrossRef
Google scholar
|
[96] |
Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422
CrossRef
Google scholar
|
[97] |
Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, Yang M, Bai X, Pang Y, Yu J
CrossRef
Google scholar
|
[98] |
Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M, Liu Z, Min Z, Hu H, Jing Y
CrossRef
Google scholar
|
[99] |
Wang S, Zheng Y, Li Q, He X, Ren R, Zhang W, Song M, Hu H, Liu F, Sun G
CrossRef
Google scholar
|
[100] |
Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M, Brown WT, Kuchna I, Wegiel J, Nowicki K
CrossRef
Google scholar
|
[101] |
Woo MS, Ufer F, Rothammer N, Di Liberto G, Binkle L, Haferkamp U, Sonner JK, Engler JB, Hornig S, Bauer S
CrossRef
Google scholar
|
[102] |
Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186
CrossRef
Google scholar
|
[103] |
Yang X, Goh A, Chen SH, Qiu A (2013) Evolution of hippocampal shapes across the human lifespan. Hum Brain Mapp 34:3075–3085
CrossRef
Google scholar
|
[104] |
Yang AC, Stevens MY, Chen MB, Lee DP, Stahli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L
CrossRef
Google scholar
|
[105] |
Young MD, Behjati S (2020) SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9:giaa151
CrossRef
Google scholar
|
[106] |
Yu HC, Tung CH, Huang KY, Huang HB, Lu MC (2020) The essential role of peptidylarginine deiminases 2 for cytokines secretion, apoptosis, and cell adhesion in macrophage. Int J Mol Sci 21:5720
CrossRef
Google scholar
|
[107] |
Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33
CrossRef
Google scholar
|
[108] |
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J
CrossRef
Google scholar
|
[109] |
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A
CrossRef
Google scholar
|
[110] |
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z
CrossRef
Google scholar
|
[111] |
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS (2020a) The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell. https://doi.org/10.1007/s13238-020-00812-9
CrossRef
Google scholar
|
[112] |
Zhang W, Qu J, Liu GH, Belmonte JCI (2020b) The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 21:137–150
CrossRef
Google scholar
|
[113] |
Zhang W, Zhang S, Yan P, Ren J, Song M, Li J, Lei J, Pan H, Wang S, Ma X
CrossRef
Google scholar
|
[114] |
Zhong S, Ding W, Sun L, Lu Y, Dong H, Fan X, Liu Z, Chen R, Zhang S, Ma Q
CrossRef
Google scholar
|
[115] |
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 10:1523
CrossRef
Google scholar
|
/
〈 | 〉 |