Homology-based repair induced by CRISPRCas nucleases in mammalian embryo genome editing

Xiya Zhang, Tao Li, Jianping Ou, Junjiu Huang, Puping Liang

PDF(921 KB)
PDF(921 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (5) : 316-335. DOI: 10.1007/s13238-021-00838-7
REVIEW
REVIEW

Homology-based repair induced by CRISPRCas nucleases in mammalian embryo genome editing

Author information +
History +

Abstract

Recent advances in genome editing, especially CRISPRCas nucleases, have revolutionized both laboratory research and clinical therapeutics. CRISPR-Cas nucleases, together with the DNA damage repair pathway in cells, enable both genetic diversification by classical non-homologous end joining (c-NHEJ) and precise genome modification by homology-based repair (HBR). Genome editing in zygotes is a convenient way to edit the germline, paving the way for animal disease model generation, as well as human embryo genome editing therapy for some life-threatening and incurable diseases. HBR efficiency is highly dependent on the DNA donor that is utilized as a repair template. Here, we review recent progress in improving CRISPR-Cas nuclease-induced HBR in mammalian embryos by designing a suitable DNA donor. Moreover, we want to provide a guide for producing animal disease models and correcting genetic mutations through CRISPR-Cas nuclease-induced HBR in mammalian embryos. Finally, we discuss recent developments in precise genomemodification technology based on the CRISPR-Cas system.

Keywords

homology-based repair (HBR) / genome editing / disease modeling / embryo / precision medicine

Cite this article

Download citation ▾
Xiya Zhang, Tao Li, Jianping Ou, Junjiu Huang, Puping Liang. Homology-based repair induced by CRISPRCas nucleases in mammalian embryo genome editing. Protein Cell, 2022, 13(5): 316‒335 https://doi.org/10.1007/s13238-021-00838-7

References

[1]
Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ, Beard MR, Hughes J, Pomerantz RT, Thomas PQ (2018) Large deletions induced by Cas9 cleavage. Nature 560:E8–E9
CrossRef Google scholar
[2]
Aida T, Chiyo K, Usami T, Ishikubo H, Imahashi R, Wada Y, Tanaka KF, Sakuma T, Yamamoto T, Tanaka K (2015) Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol 16:87
CrossRef Google scholar
[3]
Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, Ishikubo H, Usami T, Aizawa H, Yamamoto T (2016) Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics 17:979
CrossRef Google scholar
[4]
Aird EJ, Lovendahl KN, St Martin A, Harris RS, Gordon WR (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol 1:54
CrossRef Google scholar
[5]
Alanis-Lobato G, Zohren J, Mccarthy A, Fogarty NME, Kubikova N, Hardman E, Greco M, Wells D, Turner JMA, Niakan KK (2020) Frequent loss-of-heterozygosity in CRISPR-Cas9-edited early human embryos. bioRxiv.
CrossRef Google scholar
[6]
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157
CrossRef Google scholar
[7]
Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844
CrossRef Google scholar
[8]
Bak RO, Porteus MH (2017) CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors. Cell Rep 20:750–756
CrossRef Google scholar
[9]
Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M (2015) Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348:36–38
CrossRef Google scholar
[10]
Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118
CrossRef Google scholar
[11]
Bennardo N, Cheng A, Huang N, Stark JM (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4:
CrossRef Google scholar
[12]
Bothmer A, Phadke T, Barrera LA, Margulies CM, Lee CS, Buquicchio F, Moss S, Abdulkerim HS, Selleck W, Jayaram H (2017) Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Nat Commun 8:13905
CrossRef Google scholar
[13]
Canaj H, Hussmann JA, Li H, Beckman KA, Goodrich L, Cho NH, Li YJ, Santos DA, McGeever A, Stewart EM (2019) Deep profiling reveals substantial heterogeneity of integration outcomes in CRISPR knock-in experiments. BioRxiv.
CrossRef Google scholar
[14]
Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K (2017) Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun 8:1711
CrossRef Google scholar
[15]
Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–64
CrossRef Google scholar
[16]
Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Nonhomologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506
CrossRef Google scholar
[17]
Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8:753–755
CrossRef Google scholar
[18]
Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410
CrossRef Google scholar
[19]
Chen S, Sun S, Moonen D, Lee C, Lee AY, Schaffer DV, He L (2019) CRISPR-READI: Efficient Generation of Knockin Mice by CRISPR RNP Electroporation and AAV Donor Infection. Cell Rep 27(3780–3789):
CrossRef Google scholar
[20]
Chen Y, Zhi S, Liu W, Wen J, Hu S, Cao T, Sun H, Li Y, Huang L, Liu Y (2020) Development of highly efficient dual-AAV split adenosine base editor for in vivo gene therapy. Small Methods 4(9):2000309
CrossRef Google scholar
[21]
Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973
CrossRef Google scholar
[22]
Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548
CrossRef Google scholar
[23]
Codner GF, Mianne J, Caulder A, Loeffler J, Fell R, King R, Allan AJ, Mackenzie M, Pike FJ, McCabe CV (2018) Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol 16:70
CrossRef Google scholar
[24]
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
CrossRef Google scholar
[25]
Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23:415–423
CrossRef Google scholar
[26]
De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S, Lee J, Theobald-Whiting N, Chu J, Garofalo M (2017) CRISPRCas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med 9: eaah3480
CrossRef Google scholar
[27]
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389
CrossRef Google scholar
[28]
DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, Heo SJ, Mitros T, Munoz DP, Boffelli D (2016) Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 8:
CrossRef Google scholar
[29]
Doman JL, Raguram A, Newby GA, Liu DR (2020) Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol 38:620–628
CrossRef Google scholar
[30]
Doudna JA (2020) The promise and challenge of therapeutic genome editing. Nature 578:229–236
CrossRef Google scholar
[31]
Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A, Jasin M (2018) Inter-homologue repair in fertilized human eggs? Nature 560:E5–E7
CrossRef Google scholar
[32]
Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405
CrossRef Google scholar
[33]
Gaj T, Staahl BT, Rodrigues GMC, Limsirichai P, Ekman FK, Doudna JA, Schaffer DV (2017) Targeted gene knock-in by homologydirected genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Res 45:
CrossRef Google scholar
[34]
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471
CrossRef Google scholar
[35]
Ge XA, Hunter CP (2019) Efficient homologous recombination in mice using long single stranded DNA and CRISPR Cas9 nickase. G3 (Bethesda) 9:281–286
CrossRef Google scholar
[36]
Grunewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK (2019a) Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569:433–437
CrossRef Google scholar
[37]
Grunewald J, Zhou R, Iyer S, Lareau CA, Garcia SP, Aryee MJ, Joung JK (2019b) CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol 37:1041–1048
CrossRef Google scholar
[38]
Gu B, Posfai E, Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol 36:632–637
CrossRef Google scholar
[39]
Gurumurthy CB, O’Brien AR, Quadros RM, Adams J Jr, Alcaide P, Ayabe S, Ballard J, Batra SK, Beauchamp MC, Becker KA (2019) Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biol 20:171
CrossRef Google scholar
[40]
Hendel A, Kildebeck EJ, Fine EJ, Clark J, Punjya N, Sebastiano V, Bao G, Porteus MH (2014) Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep 7:293–305
CrossRef Google scholar
[41]
Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamamoto T, Kawahara A (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841
CrossRef Google scholar
[42]
Iyer S, Mir A, Vega-Badillo J, Roscoe BP, Ibraheim R, Zhu LHJ, Lee JY, Liu PP, Luk K, Mintzer E (2019) Efficient homologydirected repair with circular ssDNA donors. bioRxiv.
CrossRef Google scholar
[43]
Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:867–871
CrossRef Google scholar
[44]
Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu JL, Zhang F (2019) Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364:292–295
CrossRef Google scholar
[45]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821
CrossRef Google scholar
[46]
Kan Y, Ruis B, Takasugi T, Hendrickson EA (2017) Mechanisms of precise genome editing using oligonucleotide donors. Genome Res 27:1099–1111
CrossRef Google scholar
[47]
Kim D, Lim K, Kim ST, Yoon SH, Kim K, Ryu SM, Kim JS (2017a) Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 35:475–480
CrossRef Google scholar
[48]
Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS (2017b) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435–437
CrossRef Google scholar
[49]
Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR (2017c) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35:371–376
CrossRef Google scholar
[50]
Kim D, Kim DE, Lee G, Cho SI, Kim JS (2019) Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol 37:430–435
CrossRef Google scholar
[51]
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571:219–225
CrossRef Google scholar
[52]
Kohama Y, Higo S, Masumura Y, Shiba M, Kondo T, Ishizu T, Higo T, Nakamura S, Kameda S, Tabata T (2020) Adeno-associated virus-mediated gene delivery promotes S-phase entry-independent precise targeted integration in cardiomyocytes. Sci Rep 10:15348
CrossRef Google scholar
[53]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
CrossRef Google scholar
[54]
Krooss SA, Dai Z, Schmidt F, Rovai A, Fakhiri J, Dhingra A, Yuan Q, Yang T, Balakrishnan A, Steinbruck L (2020) Ex vivo/in vivo gene editing in hepatocytes using “All-in-One” CRISPR-Adeno-Associated Virus vectors with a self-linearizing repair template. iScience 23:
CrossRef Google scholar
[55]
Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, Grunewald J, Joung JK (2020) CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39(1):41–46
CrossRef Google scholar
[56]
Kwart D, Paquet D, Teo S, Tessier-Lavigne M (2017) Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc 12:329–354
CrossRef Google scholar
[57]
Lanza DG, Gaspero A, Lorenzo I, Liao L, Zheng P, Wang Y, Deng Y, Cheng C, Zhang C, Seavitt JR (2018) Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 16:69
CrossRef Google scholar
[58]
Lee AY, Lloyd KC (2014) Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice. FEBS Open Bio 4:637–642
CrossRef Google scholar
[59]
Lee K, Mackley VA, Rao A, Chong AT, Dewitt MA, Corn JE, Murthy N (2017) Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife 6:
CrossRef Google scholar
[60]
Li H, Beckman KA, Pessino V, Huang B, Weissman JS, Leonetti MD (2019) Design and specificity of long ssDNA donors for CRISPRbased knock-in. BioRxiv.
[61]
Liang P, Huang J (2019) Off-target challenge for base editormediated genome editing. Cell Biol Toxicol 35:185–187
CrossRef Google scholar
[62]
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372
CrossRef Google scholar
[63]
Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, Zhang Z, Chen Y, Ding C, Xiong Y (2017) Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein Cell 8:601–611
CrossRef Google scholar
[64]
Liang P, Sun H, Zhang X, Xie X, Zhang J, Bai Y, Ouyang X, Zhi S, Xiong Y, Ma W (2018) Effective and precise adenine base editing in mouse zygotes. Protein Cell 9:808–813
CrossRef Google scholar
[65]
Liang P, Huang JJCB, Toxicology (2019a) Off-target challenge for base editor-mediated genome editing. Cell Biol Toxicol 35:185–187
CrossRef Google scholar
[66]
Liang P, Xie X, Zhi S, Sun H, Zhang X, Chen Y, Chen Y, Xiong Y, Ma W, Liu D (2019b) Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat Commun 10:67
CrossRef Google scholar
[67]
Ling X, Xie B, Gao X, Chang L, Zheng W, Chen H, Huang Y, Tan L, Li M, Liu T (2020). Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Sci Adv 6:eaaz0051
CrossRef Google scholar
[68]
Liskay RM, Letsou A, Stachelek JL (1987) Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115:161–167
CrossRef Google scholar
[69]
Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W (2018a) Methodologies for improving HDR efficiency. Front Genet 9:691
CrossRef Google scholar
[70]
Liu Z, Chen M, Chen S, Deng J, Song Y, Lai L, Li Z (2018b) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9:2717
CrossRef Google scholar
[71]
Liu Z, Lu Z, Yang G, Huang S, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y (2018c) Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 9:2338
CrossRef Google scholar
[72]
Liu Y, Li X, He S, Huang S, Li C, Chen Y, Liu Z, Huang X, Wang X (2020) Efficient generation of mouse models with the prime editing system. Cell Discov 6:27
CrossRef Google scholar
[73]
Ma Y, Zhang X, Shen B, Lu Y, Chen W, Ma J, Bai L, Huang X, Zhang L (2014) Generating rats with conditional alleles using CRISPR/Cas9. Cell research 24:122–125
CrossRef Google scholar
[74]
Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R (2017a) Correction of a pathogenic gene mutation in human embryos. Nature 548:413–419
CrossRef Google scholar
[75]
Ma M, Zhuang F, Hu X, Wang B, Wen XZ, Ji JF, Xi JJ (2017b) Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res 27:578–581
CrossRef Google scholar
[76]
Ma H, Marti-Gutierrez N, Park SW, Wu J, Hayama T, Darby H, Van Dyken C, Li Y, Koski A, Liang D (2018) Ma et al. reply. Nature 560:E10–E23.
CrossRef Google scholar
[77]
Macintosh KL (2019) Heritable Genome Editing and the Downsides of a Global Moratorium. CRISPR J 2:272–279
CrossRef Google scholar
[78]
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
CrossRef Google scholar
[79]
Menoret S, De Cian A, Tesson L, Remy S, Usal C, Boule JB, Boix C, Fontaniere S, Creneguy A, Nguyen TH (2015) Homologydirected repair in rodent zygotes using Cas9 and TALEN engineered proteins. Sci Rep 5:14410
CrossRef Google scholar
[80]
Miura H, Gurumurthy CB, Sato T, Sato M, Ohtsuka M (2015) CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 5:12799
CrossRef Google scholar
[81]
Miyasaka Y, Uno Y, Yoshimi K, Kunihiro Y, Yoshimura T, Tanaka T, Ishikubo H, Hiraoka Y, Takemoto N, Tanaka T (2018) CLICK: one-step generation of conditional knockout mice. BMC Genomics 19:318
CrossRef Google scholar
[82]
Mohr S, Ghanem E, Smith W, Sheeter D, Qin Y, King O, Polioudakis D, Iyer VR, Hunicke-Smith S, Swamy S (2013) Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 19:958–970
CrossRef Google scholar
[83]
Murgha YE, Rouillard JM, Gulari E (2014) Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. PLoS ONE 9:
CrossRef Google scholar
[84]
Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560
CrossRef Google scholar
[85]
Nakao H, Harada T, Nakao K, Kiyonari H, Inoue K, Furuta Y, Aiba A (2016) A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes. Genesis 54:65–77
CrossRef Google scholar
[86]
Ohtsuka M, Sato M, Miura H, Takabayashi S, Matsuyama M, Koyano T, Arifin N, Nakamura S, Wada K, Gurumurthy CB (2018) i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol 19:25
CrossRef Google scholar
[87]
Okamoto S, Amaishi Y, Maki I, Enoki T, Mineno J (2019) Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci Rep 9:4811
CrossRef Google scholar
[88]
Paix A, Schmidt H, Seydoux G (2016) Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res 44:e128
CrossRef Google scholar
[89]
Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA (2016) Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. ACS Cent Sci 2:756–763
CrossRef Google scholar
[90]
Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA (2017) CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations. Proc Natl Acad Sci USA 114:7260–7265
CrossRef Google scholar
[91]
Papaioannou I, Disterer P, Owen JS (2009) Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing. J Gene Med 11:267–274
CrossRef Google scholar
[92]
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129
CrossRef Google scholar
[93]
Pavel-Dinu M, Wiebking V, Dejene BT, Srifa W, Mantri S, Nicolas CE, Lee C, Bao G, Kildebeck EJ, Punjya N (2019) Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 10:1634
CrossRef Google scholar
[94]
Pritchard CEJ, Kroese LJ, Huijbers IJ (2017) Direct generation of conditional alleles using CRISPR/Cas9 in mouse zygotes. Methods Mol Biol 1642:21–35
CrossRef Google scholar
[95]
Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18:92
CrossRef Google scholar
[96]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308
CrossRef Google scholar
[97]
Rees HA, Wilson C, Doman JL, Liu DR (2019) Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv 5:eaax5717
CrossRef Google scholar
[98]
Reichmann J, Nijmeijer B, Hossain MJ, Eguren M, Schneider I, Politi AZ, Roberti MJ, Hufnagel L, Hiiragi T, Ellenberg J (2018) Dualspindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 361:189–193
CrossRef Google scholar
[99]
Remy S, Chenouard V, Tesson L, Usal C, Menoret S, Brusselle L, Heslan JM, Nguyen TH, Bellien J, Merot J (2017) Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation. Sci Rep 7:16554
CrossRef Google scholar
[100]
Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R (2016) Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14:2263–2272
CrossRef Google scholar
[101]
Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344
CrossRef Google scholar
[102]
Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, Schafer AJ, Floor SN, Corn JE (2018) CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet 50:1132–1139
CrossRef Google scholar
[103]
Roche PJR, Gytz H, Hussain F, Cameron CJF, Paquette D, Blanchette M, Dostie J, Nagar B, Akavia UD (2018) Doublestranded biotinylated donor enhances homology-directed repair in combination with Cas9 Monoavidin in Mammalian cells. CRISPR J 1:414–430
CrossRef Google scholar
[104]
Rossant J (2018) Gene editing in human development: ethical concerns and practical applications. Development 145
CrossRef Google scholar
[105]
Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rarecutting endonuclease. Mol Cell Biol 14:8096–8106
CrossRef Google scholar
[106]
Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, Kim HS, Kim DE, Lee H, Chung E (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36:536–539
CrossRef Google scholar
[107]
Sakuma T, Yamamoto T (2017) Magic wands of CRISPR-lots of choices for gene knock-in. Cell Biol Toxicol 33:501–505
CrossRef Google scholar
[108]
Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M, Khan IF, Singh S, Song Y, Gwiazda K, Sahni J (2015) Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med 7:
CrossRef Google scholar
[109]
Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife 7:
CrossRef Google scholar
[110]
Shen B, Zhang X, Du Y, Wang J, Gong J, Zhang X, Tate PH, Li H, Huang X, Zhang W (2013) Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes. PLoS ONE 8:
CrossRef Google scholar
[111]
Shen MW, Arbab M, Hsu JY, Worstell D, Culbertson SJ, Krabbe O, Cassa CA, Liu DR, Gifford DK, Sherwood RI (2018) Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563:646–651
CrossRef Google scholar
[112]
Stahl S, Hultman T, Olsson A, Moks T, Uhlen M (1988) Solid phase DNA sequencing using the biotin-avidin system. Nucleic Acids Res 16:3025–3038
CrossRef Google scholar
[113]
Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–113
CrossRef Google scholar
[114]
Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365:48–53
CrossRef Google scholar
[115]
Surun D, Schneider A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, Hanchen V, Lee-Kirsch MA, Buchholz F (2020) Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes (Basel) 11(5):511
CrossRef Google scholar
[116]
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149
CrossRef Google scholar
[117]
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646
CrossRef Google scholar
[118]
Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, Li PW, Shivak DA, Surosky RT, Gregory PD, Holmes MC (2015) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263
CrossRef Google scholar
[119]
Wang Y, Liu KI, Sutrisnoh NB, Srinivasan H, Zhang J, Li J, Zhang F, Lalith CRJ, Xing H, Shanmugam R (2018) Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Genome Biol 19:62
CrossRef Google scholar
[120]
Wilde JJ, Aida T, Wienisch M, Zhang Q, Qi P, Feng G (2018) Efficient zygotic genome editing via RAD51-enhanced interhomolog repair. bioRxiv.
CrossRef Google scholar
[121]
Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241
CrossRef Google scholar
[122]
Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662
CrossRef Google scholar
[123]
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379
CrossRef Google scholar
[124]
Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, Yu H, Xu C, Morizono H, Musunuru K (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34:334–338
CrossRef Google scholar
[125]
Yang L, Zhang X, Wang L, Yin S, Zhu B, Xie L, Duan Q, Hu H, Zheng R, Wei Y (2018) Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell 9:814–819
CrossRef Google scholar
[126]
Yao X, Wang X, Hu X, Liu Z, Liu J, Zhou H, Shen X, Wei Y, Huang Z, Ying W (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27:801–814
CrossRef Google scholar
[127]
Yao X, Liu Z, Wang X, Wang Y, Nie YH, Lai L, Sun R, Shi L, Sun Q, Yang H (2018a) Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing. Cell research 28:379–382
CrossRef Google scholar
[128]
Yao X, Zhang M, Wang X, Ying W, Hu X, Dai P, Meng F, Shi L, Sun Y, Yao N (2018b) Tild-CRISPR allows for efficient and precise gene Knockin in mouse and human cells. Dev Cell 45(526–536):
CrossRef Google scholar
[129]
Yeh CD, Richardson CD, Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21:1468–1478
CrossRef Google scholar
[130]
Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34:328–333
CrossRef Google scholar
[131]
Yoon Y, Wang D, Tai PWL, Riley J, Gao G, Rivera-Perez JA (2018) Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 9:412
CrossRef Google scholar
[132]
Yoshimi K, Kaneko T, Voigt B, Mashimo T (2014) Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun 5:4240
CrossRef Google scholar
[133]
Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431
CrossRef Google scholar
[134]
Yu Y, Leete TC, Born DA, Young L, Barrera LA, Lee SJ, Rees HA, Ciaramella G, Gaudelli NM (2020) Cytosine base editors with minimized unguided DNA and RNA off-target events and high ontarget activity. Nat Commun 11:2052
CrossRef Google scholar
[135]
Zhang WW, Matlashewski G (2019) Single-strand annealing plays a major role in double-strand DNA break repair following CRISPRCas9 Cleavage in Leishmania. mSphere 4
CrossRef Google scholar
[136]
Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18:35
CrossRef Google scholar
[137]
Zhao D, Li J, Li S, Xin X, Hu M, Price MA, Rosser SJ, Bi C, aZhang X (2020a) Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol
CrossRef Google scholar
[138]
Zhao D, Li J, Li S, Xin X, Hu M, Price MA, Rosser SJ, Bi C, Zhang X (2020b) New base editors change C to A in bacteria and C to G in mammalian cells. Nat Biotechnol
[139]
Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, Han L, Wei Y, Hu X, Zeng R (2019) Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571:275–278
CrossRef Google scholar
[140]
Zuccaro MV, Xu J, Mitchell C, Marin D, Zimmerman R, Rana B, Weinstein E, King RT, Palmerola KL, Smith ME (2020) Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell 183(6):1650–1664
CrossRef Google scholar
[141]
Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289–292
CrossRef Google scholar
[142]
Zuo E, Sun Y, Yuan T, He B, Zhou C, Ying W, Liu J, Wei W, Zeng R, Li Y (2020) A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat Methods 17:600–604
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(921 KB)

Accesses

Citations

Detail

Sections
Recommended

/