Homology-based repair induced by CRISPRCas nucleases in mammalian embryo genome editing
Xiya Zhang, Tao Li, Jianping Ou, Junjiu Huang, Puping Liang
Homology-based repair induced by CRISPRCas nucleases in mammalian embryo genome editing
Recent advances in genome editing, especially CRISPRCas nucleases, have revolutionized both laboratory research and clinical therapeutics. CRISPR-Cas nucleases, together with the DNA damage repair pathway in cells, enable both genetic diversification by classical non-homologous end joining (c-NHEJ) and precise genome modification by homology-based repair (HBR). Genome editing in zygotes is a convenient way to edit the germline, paving the way for animal disease model generation, as well as human embryo genome editing therapy for some life-threatening and incurable diseases. HBR efficiency is highly dependent on the DNA donor that is utilized as a repair template. Here, we review recent progress in improving CRISPR-Cas nuclease-induced HBR in mammalian embryos by designing a suitable DNA donor. Moreover, we want to provide a guide for producing animal disease models and correcting genetic mutations through CRISPR-Cas nuclease-induced HBR in mammalian embryos. Finally, we discuss recent developments in precise genomemodification technology based on the CRISPR-Cas system.
homology-based repair (HBR) / genome editing / disease modeling / embryo / precision medicine
[1] |
Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ, Beard MR, Hughes J, Pomerantz RT, Thomas PQ (2018) Large deletions induced by Cas9 cleavage. Nature 560:E8–E9
CrossRef
Google scholar
|
[2] |
Aida T, Chiyo K, Usami T, Ishikubo H, Imahashi R, Wada Y, Tanaka KF, Sakuma T, Yamamoto T, Tanaka K (2015) Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol 16:87
CrossRef
Google scholar
|
[3] |
Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, Ishikubo H, Usami T, Aizawa H, Yamamoto T
CrossRef
Google scholar
|
[4] |
Aird EJ, Lovendahl KN, St Martin A, Harris RS, Gordon WR (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol 1:54
CrossRef
Google scholar
|
[5] |
Alanis-Lobato G, Zohren J, Mccarthy A, Fogarty NME, Kubikova N, Hardman E, Greco M, Wells D, Turner JMA, Niakan KK (2020) Frequent loss-of-heterozygosity in CRISPR-Cas9-edited early human embryos. bioRxiv.
CrossRef
Google scholar
|
[6] |
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A
CrossRef
Google scholar
|
[7] |
Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844
CrossRef
Google scholar
|
[8] |
Bak RO, Porteus MH (2017) CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors. Cell Rep 20:750–756
CrossRef
Google scholar
|
[9] |
Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M
CrossRef
Google scholar
|
[10] |
Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY
CrossRef
Google scholar
|
[11] |
Bennardo N, Cheng A, Huang N, Stark JM (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4:
CrossRef
Google scholar
|
[12] |
Bothmer A, Phadke T, Barrera LA, Margulies CM, Lee CS, Buquicchio F, Moss S, Abdulkerim HS, Selleck W, Jayaram H
CrossRef
Google scholar
|
[13] |
Canaj H, Hussmann JA, Li H, Beckman KA, Goodrich L, Cho NH, Li YJ, Santos DA, McGeever A, Stewart EM
CrossRef
Google scholar
|
[14] |
Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K (2017) Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun 8:1711
CrossRef
Google scholar
|
[15] |
Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–64
CrossRef
Google scholar
|
[16] |
Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Nonhomologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506
CrossRef
Google scholar
|
[17] |
Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8:753–755
CrossRef
Google scholar
|
[18] |
Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410
CrossRef
Google scholar
|
[19] |
Chen S, Sun S, Moonen D, Lee C, Lee AY, Schaffer DV, He L (2019) CRISPR-READI: Efficient Generation of Knockin Mice by CRISPR RNP Electroporation and AAV Donor Infection. Cell Rep 27(3780–3789):
CrossRef
Google scholar
|
[20] |
Chen Y, Zhi S, Liu W, Wen J, Hu S, Cao T, Sun H, Li Y, Huang L, Liu Y
CrossRef
Google scholar
|
[21] |
Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973
CrossRef
Google scholar
|
[22] |
Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548
CrossRef
Google scholar
|
[23] |
Codner GF, Mianne J, Caulder A, Loeffler J, Fell R, King R, Allan AJ, Mackenzie M, Pike FJ, McCabe CV
CrossRef
Google scholar
|
[24] |
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA
CrossRef
Google scholar
|
[25] |
Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23:415–423
CrossRef
Google scholar
|
[26] |
De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S, Lee J, Theobald-Whiting N, Chu J, Garofalo M
CrossRef
Google scholar
|
[27] |
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S
CrossRef
Google scholar
|
[28] |
DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, Heo SJ, Mitros T, Munoz DP, Boffelli D
CrossRef
Google scholar
|
[29] |
Doman JL, Raguram A, Newby GA, Liu DR (2020) Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol 38:620–628
CrossRef
Google scholar
|
[30] |
Doudna JA (2020) The promise and challenge of therapeutic genome editing. Nature 578:229–236
CrossRef
Google scholar
|
[31] |
Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A, Jasin M (2018) Inter-homologue repair in fertilized human eggs? Nature 560:E5–E7
CrossRef
Google scholar
|
[32] |
Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405
CrossRef
Google scholar
|
[33] |
Gaj T, Staahl BT, Rodrigues GMC, Limsirichai P, Ekman FK, Doudna JA, Schaffer DV (2017) Targeted gene knock-in by homologydirected genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Res 45:
CrossRef
Google scholar
|
[34] |
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471
CrossRef
Google scholar
|
[35] |
Ge XA, Hunter CP (2019) Efficient homologous recombination in mice using long single stranded DNA and CRISPR Cas9 nickase. G3 (Bethesda) 9:281–286
CrossRef
Google scholar
|
[36] |
Grunewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK (2019a) Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569:433–437
CrossRef
Google scholar
|
[37] |
Grunewald J, Zhou R, Iyer S, Lareau CA, Garcia SP, Aryee MJ, Joung JK (2019b) CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol 37:1041–1048
CrossRef
Google scholar
|
[38] |
Gu B, Posfai E, Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol 36:632–637
CrossRef
Google scholar
|
[39] |
Gurumurthy CB, O’Brien AR, Quadros RM, Adams J Jr, Alcaide P, Ayabe S, Ballard J, Batra SK, Beauchamp MC, Becker KA
CrossRef
Google scholar
|
[40] |
Hendel A, Kildebeck EJ, Fine EJ, Clark J, Punjya N, Sebastiano V, Bao G, Porteus MH (2014) Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep 7:293–305
CrossRef
Google scholar
|
[41] |
Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamamoto T, Kawahara A (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841
CrossRef
Google scholar
|
[42] |
Iyer S, Mir A, Vega-Badillo J, Roscoe BP, Ibraheim R, Zhu LHJ, Lee JY, Liu PP, Luk K, Mintzer E
CrossRef
Google scholar
|
[43] |
Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:867–871
CrossRef
Google scholar
|
[44] |
Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu JL, Zhang F
CrossRef
Google scholar
|
[45] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821
CrossRef
Google scholar
|
[46] |
Kan Y, Ruis B, Takasugi T, Hendrickson EA (2017) Mechanisms of precise genome editing using oligonucleotide donors. Genome Res 27:1099–1111
CrossRef
Google scholar
|
[47] |
Kim D, Lim K, Kim ST, Yoon SH, Kim K, Ryu SM, Kim JS (2017a) Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 35:475–480
CrossRef
Google scholar
|
[48] |
Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS (2017b) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435–437
CrossRef
Google scholar
|
[49] |
Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR (2017c) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35:371–376
CrossRef
Google scholar
|
[50] |
Kim D, Kim DE, Lee G, Cho SI, Kim JS (2019) Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol 37:430–435
CrossRef
Google scholar
|
[51] |
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571:219–225
CrossRef
Google scholar
|
[52] |
Kohama Y, Higo S, Masumura Y, Shiba M, Kondo T, Ishizu T, Higo T, Nakamura S, Kameda S, Tabata T
CrossRef
Google scholar
|
[53] |
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
CrossRef
Google scholar
|
[54] |
Krooss SA, Dai Z, Schmidt F, Rovai A, Fakhiri J, Dhingra A, Yuan Q, Yang T, Balakrishnan A, Steinbruck L
CrossRef
Google scholar
|
[55] |
Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, Grunewald J, Joung JK (2020) CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39(1):41–46
CrossRef
Google scholar
|
[56] |
Kwart D, Paquet D, Teo S, Tessier-Lavigne M (2017) Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc 12:329–354
CrossRef
Google scholar
|
[57] |
Lanza DG, Gaspero A, Lorenzo I, Liao L, Zheng P, Wang Y, Deng Y, Cheng C, Zhang C, Seavitt JR
CrossRef
Google scholar
|
[58] |
Lee AY, Lloyd KC (2014) Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice. FEBS Open Bio 4:637–642
CrossRef
Google scholar
|
[59] |
Lee K, Mackley VA, Rao A, Chong AT, Dewitt MA, Corn JE, Murthy N (2017) Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife 6:
CrossRef
Google scholar
|
[60] |
Li H, Beckman KA, Pessino V, Huang B, Weissman JS, Leonetti MD (2019) Design and specificity of long ssDNA donors for CRISPRbased knock-in. BioRxiv.
|
[61] |
Liang P, Huang J (2019) Off-target challenge for base editormediated genome editing. Cell Biol Toxicol 35:185–187
CrossRef
Google scholar
|
[62] |
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y
CrossRef
Google scholar
|
[63] |
Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, Zhang Z, Chen Y, Ding C, Xiong Y
CrossRef
Google scholar
|
[64] |
Liang P, Sun H, Zhang X, Xie X, Zhang J, Bai Y, Ouyang X, Zhi S, Xiong Y, Ma W
CrossRef
Google scholar
|
[65] |
Liang P, Huang JJCB, Toxicology
CrossRef
Google scholar
|
[66] |
Liang P, Xie X, Zhi S, Sun H, Zhang X, Chen Y, Chen Y, Xiong Y, Ma W, Liu D
CrossRef
Google scholar
|
[67] |
Ling X, Xie B, Gao X, Chang L, Zheng W, Chen H, Huang Y, Tan L, Li M, Liu T (2020). Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Sci Adv 6:eaaz0051
CrossRef
Google scholar
|
[68] |
Liskay RM, Letsou A, Stachelek JL (1987) Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115:161–167
CrossRef
Google scholar
|
[69] |
Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W (2018a) Methodologies for improving HDR efficiency. Front Genet 9:691
CrossRef
Google scholar
|
[70] |
Liu Z, Chen M, Chen S, Deng J, Song Y, Lai L, Li Z (2018b) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9:2717
CrossRef
Google scholar
|
[71] |
Liu Z, Lu Z, Yang G, Huang S, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y
CrossRef
Google scholar
|
[72] |
Liu Y, Li X, He S, Huang S, Li C, Chen Y, Liu Z, Huang X, Wang X (2020) Efficient generation of mouse models with the prime editing system. Cell Discov 6:27
CrossRef
Google scholar
|
[73] |
Ma Y, Zhang X, Shen B, Lu Y, Chen W, Ma J, Bai L, Huang X, Zhang L (2014) Generating rats with conditional alleles using CRISPR/Cas9. Cell research 24:122–125
CrossRef
Google scholar
|
[74] |
Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R
CrossRef
Google scholar
|
[75] |
Ma M, Zhuang F, Hu X, Wang B, Wen XZ, Ji JF, Xi JJ (2017b) Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res 27:578–581
CrossRef
Google scholar
|
[76] |
Ma H, Marti-Gutierrez N, Park SW, Wu J, Hayama T, Darby H, Van Dyken C, Li Y, Koski A, Liang D
CrossRef
Google scholar
|
[77] |
Macintosh KL (2019) Heritable Genome Editing and the Downsides of a Global Moratorium. CRISPR J 2:272–279
CrossRef
Google scholar
|
[78] |
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
CrossRef
Google scholar
|
[79] |
Menoret S, De Cian A, Tesson L, Remy S, Usal C, Boule JB, Boix C, Fontaniere S, Creneguy A, Nguyen TH
CrossRef
Google scholar
|
[80] |
Miura H, Gurumurthy CB, Sato T, Sato M, Ohtsuka M (2015) CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 5:12799
CrossRef
Google scholar
|
[81] |
Miyasaka Y, Uno Y, Yoshimi K, Kunihiro Y, Yoshimura T, Tanaka T, Ishikubo H, Hiraoka Y, Takemoto N, Tanaka T
CrossRef
Google scholar
|
[82] |
Mohr S, Ghanem E, Smith W, Sheeter D, Qin Y, King O, Polioudakis D, Iyer VR, Hunicke-Smith S, Swamy S
CrossRef
Google scholar
|
[83] |
Murgha YE, Rouillard JM, Gulari E (2014) Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. PLoS ONE 9:
CrossRef
Google scholar
|
[84] |
Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T
CrossRef
Google scholar
|
[85] |
Nakao H, Harada T, Nakao K, Kiyonari H, Inoue K, Furuta Y, Aiba A (2016) A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes. Genesis 54:65–77
CrossRef
Google scholar
|
[86] |
Ohtsuka M, Sato M, Miura H, Takabayashi S, Matsuyama M, Koyano T, Arifin N, Nakamura S, Wada K, Gurumurthy CB (2018) i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol 19:25
CrossRef
Google scholar
|
[87] |
Okamoto S, Amaishi Y, Maki I, Enoki T, Mineno J (2019) Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci Rep 9:4811
CrossRef
Google scholar
|
[88] |
Paix A, Schmidt H, Seydoux G (2016) Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res 44:e128
CrossRef
Google scholar
|
[89] |
Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA (2016) Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. ACS Cent Sci 2:756–763
CrossRef
Google scholar
|
[90] |
Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA (2017) CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations. Proc Natl Acad Sci USA 114:7260–7265
CrossRef
Google scholar
|
[91] |
Papaioannou I, Disterer P, Owen JS (2009) Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing. J Gene Med 11:267–274
CrossRef
Google scholar
|
[92] |
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129
CrossRef
Google scholar
|
[93] |
Pavel-Dinu M, Wiebking V, Dejene BT, Srifa W, Mantri S, Nicolas CE, Lee C, Bao G, Kildebeck EJ, Punjya N
CrossRef
Google scholar
|
[94] |
Pritchard CEJ, Kroese LJ, Huijbers IJ (2017) Direct generation of conditional alleles using CRISPR/Cas9 in mouse zygotes. Methods Mol Biol 1642:21–35
CrossRef
Google scholar
|
[95] |
Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D
CrossRef
Google scholar
|
[96] |
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308
CrossRef
Google scholar
|
[97] |
Rees HA, Wilson C, Doman JL, Liu DR (2019) Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv 5:eaax5717
CrossRef
Google scholar
|
[98] |
Reichmann J, Nijmeijer B, Hossain MJ, Eguren M, Schneider I, Politi AZ, Roberti MJ, Hufnagel L, Hiiragi T, Ellenberg J (2018) Dualspindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 361:189–193
CrossRef
Google scholar
|
[99] |
Remy S, Chenouard V, Tesson L, Usal C, Menoret S, Brusselle L, Heslan JM, Nguyen TH, Bellien J, Merot J
CrossRef
Google scholar
|
[100] |
Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R
CrossRef
Google scholar
|
[101] |
Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344
CrossRef
Google scholar
|
[102] |
Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, Schafer AJ, Floor SN, Corn JE (2018) CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet 50:1132–1139
CrossRef
Google scholar
|
[103] |
Roche PJR, Gytz H, Hussain F, Cameron CJF, Paquette D, Blanchette M, Dostie J, Nagar B, Akavia UD (2018) Doublestranded biotinylated donor enhances homology-directed repair in combination with Cas9 Monoavidin in Mammalian cells. CRISPR J 1:414–430
CrossRef
Google scholar
|
[104] |
Rossant J (2018) Gene editing in human development: ethical concerns and practical applications. Development 145
CrossRef
Google scholar
|
[105] |
Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rarecutting endonuclease. Mol Cell Biol 14:8096–8106
CrossRef
Google scholar
|
[106] |
Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, Kim HS, Kim DE, Lee H, Chung E
CrossRef
Google scholar
|
[107] |
Sakuma T, Yamamoto T (2017) Magic wands of CRISPR-lots of choices for gene knock-in. Cell Biol Toxicol 33:501–505
CrossRef
Google scholar
|
[108] |
Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M, Khan IF, Singh S, Song Y, Gwiazda K, Sahni J
CrossRef
Google scholar
|
[109] |
Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J
CrossRef
Google scholar
|
[110] |
Shen B, Zhang X, Du Y, Wang J, Gong J, Zhang X, Tate PH, Li H, Huang X, Zhang W (2013) Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes. PLoS ONE 8:
CrossRef
Google scholar
|
[111] |
Shen MW, Arbab M, Hsu JY, Worstell D, Culbertson SJ, Krabbe O, Cassa CA, Liu DR, Gifford DK, Sherwood RI (2018) Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563:646–651
CrossRef
Google scholar
|
[112] |
Stahl S, Hultman T, Olsson A, Moks T, Uhlen M (1988) Solid phase DNA sequencing using the biotin-avidin system. Nucleic Acids Res 16:3025–3038
CrossRef
Google scholar
|
[113] |
Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–113
CrossRef
Google scholar
|
[114] |
Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365:48–53
CrossRef
Google scholar
|
[115] |
Surun D, Schneider A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, Hanchen V, Lee-Kirsch MA, Buchholz F (2020) Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes (Basel) 11(5):511
CrossRef
Google scholar
|
[116] |
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z
CrossRef
Google scholar
|
[117] |
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646
CrossRef
Google scholar
|
[118] |
Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, Li PW, Shivak DA, Surosky RT, Gregory PD, Holmes MC
CrossRef
Google scholar
|
[119] |
Wang Y, Liu KI, Sutrisnoh NB, Srinivasan H, Zhang J, Li J, Zhang F, Lalith CRJ, Xing H, Shanmugam R
CrossRef
Google scholar
|
[120] |
Wilde JJ, Aida T, Wienisch M, Zhang Q, Qi P, Feng G (2018) Efficient zygotic genome editing via RAD51-enhanced interhomolog repair. bioRxiv.
CrossRef
Google scholar
|
[121] |
Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241
CrossRef
Google scholar
|
[122] |
Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662
CrossRef
Google scholar
|
[123] |
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379
CrossRef
Google scholar
|
[124] |
Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, Yu H, Xu C, Morizono H, Musunuru K
CrossRef
Google scholar
|
[125] |
Yang L, Zhang X, Wang L, Yin S, Zhu B, Xie L, Duan Q, Hu H, Zheng R, Wei Y
CrossRef
Google scholar
|
[126] |
Yao X, Wang X, Hu X, Liu Z, Liu J, Zhou H, Shen X, Wei Y, Huang Z, Ying W
CrossRef
Google scholar
|
[127] |
Yao X, Liu Z, Wang X, Wang Y, Nie YH, Lai L, Sun R, Shi L, Sun Q, Yang H (2018a) Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing. Cell research 28:379–382
CrossRef
Google scholar
|
[128] |
Yao X, Zhang M, Wang X, Ying W, Hu X, Dai P, Meng F, Shi L, Sun Y, Yao N
CrossRef
Google scholar
|
[129] |
Yeh CD, Richardson CD, Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21:1468–1478
CrossRef
Google scholar
|
[130] |
Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A
CrossRef
Google scholar
|
[131] |
Yoon Y, Wang D, Tai PWL, Riley J, Gao G, Rivera-Perez JA (2018) Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 9:412
CrossRef
Google scholar
|
[132] |
Yoshimi K, Kaneko T, Voigt B, Mashimo T (2014) Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun 5:4240
CrossRef
Google scholar
|
[133] |
Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431
CrossRef
Google scholar
|
[134] |
Yu Y, Leete TC, Born DA, Young L, Barrera LA, Lee SJ, Rees HA, Ciaramella G, Gaudelli NM (2020) Cytosine base editors with minimized unguided DNA and RNA off-target events and high ontarget activity. Nat Commun 11:2052
CrossRef
Google scholar
|
[135] |
Zhang WW, Matlashewski G (2019) Single-strand annealing plays a major role in double-strand DNA break repair following CRISPRCas9 Cleavage in Leishmania. mSphere 4
CrossRef
Google scholar
|
[136] |
Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW
CrossRef
Google scholar
|
[137] |
Zhao D, Li J, Li S, Xin X, Hu M, Price MA, Rosser SJ, Bi C, aZhang X (2020a) Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol
CrossRef
Google scholar
|
[138] |
Zhao D, Li J, Li S, Xin X, Hu M, Price MA, Rosser SJ, Bi C, Zhang X (2020b) New base editors change C to A in bacteria and C to G in mammalian cells. Nat Biotechnol
|
[139] |
Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, Han L, Wei Y, Hu X, Zeng R
CrossRef
Google scholar
|
[140] |
Zuccaro MV, Xu J, Mitchell C, Marin D, Zimmerman R, Rana B, Weinstein E, King RT, Palmerola KL, Smith ME
CrossRef
Google scholar
|
[141] |
Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289–292
CrossRef
Google scholar
|
[142] |
Zuo E, Sun Y, Yuan T, He B, Zhou C, Ying W, Liu J, Wei W, Zeng R, Li Y
CrossRef
Google scholar
|
/
〈 | 〉 |