Islet organoid as a promising model for diabetes

Xiaofei Zhang, Zhuo Ma, Eli Song, Tao Xu

PDF(1340 KB)
PDF(1340 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (4) : 239-257. DOI: 10.1007/s13238-021-00831-0
REVIEW
REVIEW

Islet organoid as a promising model for diabetes

Author information +
History +

Abstract

Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development invitroand provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an invitrohuman organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.

Keywords

islet organoid / diabetes / pluripotent/adult stem cell / pancreatic β cell / disease model

Cite this article

Download citation ▾
Xiaofei Zhang, Zhuo Ma, Eli Song, Tao Xu. Islet organoid as a promising model for diabetes. Protein Cell, 2022, 13(4): 239‒257 https://doi.org/10.1007/s13238-021-00831-0

References

[1]
Aamodt KI, Powers AC (2017) Signals in the pancreatic islet microenvironment influence beta-cell proliferation. Diabetes Obes Metab 19(Suppl 1):124–136
CrossRef Google scholar
[2]
Aguayo-Mazzucato C, Bonner-Weir S (2018) Pancreatic beta cell regeneration as a possible therapy for diabetes. Cell Metab 27:57–67
CrossRef Google scholar
[3]
Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, Kelly JR, Haakmeester C, Srijemac R, Wilson AZ (2015) Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med 4:1214–1222
CrossRef Google scholar
[4]
Ahren B (2000) Autonomic regulation of islet hormone secretionimplications for health and disease. Diabetologia 43:393–410
CrossRef Google scholar
[5]
Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, Straubhaar JR, Meissner A, Melton DA (2020) Circadian entrainment triggers maturation of human in vitro islets. Cell Stem Cell 26(108–122):e110
CrossRef Google scholar
[6]
Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, Semb H (2017) Efficient generation of glucose-responsive beta cells from isolated GP2(+) human pancreatic progenitors. Cell Rep 19:36–49
CrossRef Google scholar
[7]
Amin S, Cook B, Zhou T, Ghazizadeh Z, Lis R, Zhang T, Khalaj M, Crespo M, Perera M, Xiang JZ (2018) Discovery of a drug candidate for GLIS3-associated diabetes. Nat Commun 9:2681
CrossRef Google scholar
[8]
Arrojo e Drigo R, Ali Y, Diez J, Srinivasan DK, Berggren PO, Boehm BO (2015) New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 58:2218–2228
CrossRef Google scholar
[9]
Asahara S, Etoh H, Inoue H, Teruyama K, Shibutani Y, Ihara Y, Kawada Y, Bartolome A, Hashimoto N, Matsuda T (2015) Paternal allelic mutation at the Kcnq1 locus reduces pancreatic beta-cell mass by epigenetic modification of Cdkn1c. Proc Natl Acad Sci USA 112:8332–8337
CrossRef Google scholar
[10]
Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148:1160–1171
CrossRef Google scholar
[11]
Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR (2020) Single-cell transcriptome profiling reveals beta cell maturation in stem cell-derived islets after transplantation. Cell Rep 32:108067
CrossRef Google scholar
[12]
Bader E, Migliorini A, Gegg M, Moruzzi N, Gerdes J, Roscioni SS, Bakhti M, Brandl E, Irmler M, Beckers J (2016) Identification of proliferative and mature beta-cells in the islets of Langerhans. Nature 535:430–434
CrossRef Google scholar
[13]
Bakhti M, Scheibner K, Tritschler S, Bastidas-Ponce A, Tarquis-Medina M, Theis FJ, Lickert H (2019) Establishment of a highresolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol Metab 30:16–29
CrossRef Google scholar
[14]
Balboa D, Saarimaki-Vire J, Borshagovski D, Survila M, Lindholm P, Galli E, Eurola S, Ustinov J, Grym H, Huopio H (2018) Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife7
CrossRef Google scholar
[15]
Basford CL, Prentice KJ, Hardy AB, Sarangi F, Micallef SJ, Li X, Guo Q, Elefanty AG, Stanley EG, Keller G (2012) The functional and molecular characterisation of human embryonic stem cellderived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 55:358–371
CrossRef Google scholar
[16]
Bi H, Ye K, Jin S (2020) Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials 233:119673
CrossRef Google scholar
[17]
Bishay RH, Greenfield JR (2016) A review of maturity onset diabetes of the young (MODY) and challenges in the management of glucokinase-MODY. Med J Aust 205:480–485
CrossRef Google scholar
[18]
Borden P, Houtz J, Leach SD, Kuruvilla R (2013) Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep 4:287–301
CrossRef Google scholar
[19]
Bornstein SR, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, Boehm B, Amiel S, Holt RIG, Skyler JS (2020) Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 8:546–550
CrossRef Google scholar
[20]
Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097
CrossRef Google scholar
[21]
Broda TR, McCracken KW, Wells JM (2019) Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc 14:28–50
CrossRef Google scholar
[22]
Bruin JE, Erener S, Vela J, Hu X, Johnson JD, Kurata HT, Lynn FC, Piret JM, Asadi A, Rezania A (2014) Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12:194–208
CrossRef Google scholar
[23]
Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggrern PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334–2339
CrossRef Google scholar
[24]
Cai EP, Ishikawa Y, Zhang W, Leite NC, Li J, Hou S, Kiaf B, Hollister-Lock J, Yilmaz NK, Schiffer CA (2020) Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nat Metab 2:934–945
CrossRef Google scholar
[25]
Candiello J, Grandhi TSP, Goh SK, Vaidya V, Lemmon-Kishi M, Eliato KR, Ros R, Kumta PN, Rege K, Banerjee I (2018) 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177:27–39
CrossRef Google scholar
[26]
Cardenas-Diaz FL, Osorio-Quintero C, Diaz-Miranda MA, Kishore S, Leavens K, Jobaliya C, Stanescu D, Ortiz-Gonzalez X, Yoon C, Chen CS (2019) Modeling monogenic diabetes using human ESCs reveals developmental and metabolic deficiencies caused by mutations in HNF1A. Cell Stem Cell 25(273–289):e275
CrossRef Google scholar
[27]
Chen YJ, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, Yang C, Maehr R, Zhou Q, Shemer R (2014) De novo formation of insulin-producing “neo-beta cell islets” from intestinal crypts. Cell Rep 6:1046–1058
CrossRef Google scholar
[28]
Choi KM, Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, Park JK (2008) Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng 105:586–594
CrossRef Google scholar
[29]
Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597
CrossRef Google scholar
[30]
Coate KC, Cha J, Shrestha S, Wang W, Goncalves LM, Almaca J, Kapp ME, Fasolino M, Morgan A, Dai C (2020) SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in beta cells. Cell Metab 32(1028–1040):e1024
CrossRef Google scholar
[31]
Cogger KF, Sinha A, Sarangi F, McGaugh EC, Saunders D, Dorrell C, Mejia-Guerrero S, Aghazadeh Y, Rourke JL, Screaton RA (2017) Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat Commun 8:331
CrossRef Google scholar
[32]
Cooper-Jones B, Ford C (2016) Islet cell replacement therapy for insulin-dependent diabetes. In: CADTH Issues in Emerging Health Technologies (Ottawa (ON)), pp 1–9
[33]
D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401
CrossRef Google scholar
[34]
Davis JC, Alves TC, Helman A, Chen JC, Kenty JH, Cardone RL, Liu DR, Kibbey RG, Melton DA (2020) Glucose response by stem cell-derived beta cells in vitro is inhibited by a bottleneck in glycolysis. Cell Rep 31:107623
CrossRef Google scholar
[35]
de Vargas LM, Sobolewski J, Siegel R, Moss LG (1997) Individual beta cells within the intact islet differentially respond to glucose. J Biol Chem 272:26573–26577
CrossRef Google scholar
[36]
Dominguez-Bendala J, Qadir MMF, Pastori RL (2019) Pancreatic progenitors: there and back again. Trends Endocrinol Metab 30:4–11
CrossRef Google scholar
[37]
Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46
CrossRef Google scholar
[38]
Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cellderived 3D organoid systems. Trends Mol Med 23:393–410
CrossRef Google scholar
[39]
Dwivedi OP, Lehtovirta M, Hastoy B, Chandra V, Krentz NAJ, Kleiner S, Jain D, Richard AM, Abaitua F, Beer NL (2019) Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat Genet 51:1596–1606
CrossRef Google scholar
[40]
Eberhard D, Kragl M, Lammert E (2010) ‘Giving and taking’: endothelial and beta-cells in the islets of Langerhans. Trends Endocrinol Metab 21:457–463
CrossRef Google scholar
[41]
Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254
CrossRef Google scholar
[42]
Ghazizadeh Z, Kao DI, Amin S, Cook B, Rao S, Zhou T, Zhang T, Xiang Z, Kenyon R, Kaymakcalan O (2017) ROCKII inhibition promotes the maturation of human pancreatic beta-like cells. Nat Commun 8:298
CrossRef Google scholar
[43]
Giobbe GG, Crowley C, Luni C, Campinoti S, Khedr M, Kretzschmar K, De Santis MM, Zambaiti E, Michielin F, Meran L (2019) Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun 10:5658
CrossRef Google scholar
[44]
Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A (2011) Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn 240:589–604
CrossRef Google scholar
[45]
Greggio C, De Franceschi F, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H, Lutolf M, Grapin-Botton A (2013) Artificial threedimensional niches deconstruct pancreas development in vitro. Development 140:4452–4462
CrossRef Google scholar
[46]
Guo D, Liu H, Ruzi A, Gao G, Nasir A, Liu Y, Yang F, Wu F, Xu G, Li YX (2017) Modeling congenital hyperinsulinism with ABCC8-deficient human embryonic stem cells generated by CRISPR/ Cas9. Sci Rep 7:3156
CrossRef Google scholar
[47]
Habener JF (2004) A perspective on pancreatic stem/progenitor cells. Pediatr Diabetes 5(Suppl 2):29–37
CrossRef Google scholar
[48]
Han X, Wang M, Duan S, Franco PJ, Kenty JH, Hedrick P, Xia Y, Allen A, Ferreira LMR, Strominger JL (2019) Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci USA 116:10441–10446
CrossRef Google scholar
[49]
Han Y, Yang L, Duan X, Duan F, Nilsson-Payant BE, Yaron TM, Wang P, Tang X, Zhang T, Zhao Z (2020) Identification of candidate COVID-19 therapeutics using hPSC-derived lung organoids. bioRxiv
CrossRef Google scholar
[50]
Helman A, Cangelosi AL, Davis JC, Pham Q, Rothman A, Faust AL, Straubhaar JR, Sabatini DM, Melton DA (2020) A nutrientsensing transition at birth triggers glucose-responsive insulin secretion. Cell Metab 31(1004–1016):e1005
CrossRef Google scholar
[51]
Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR (2020) Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 38:460–470
CrossRef Google scholar
[52]
Hrvatin S, O’Donnell CW, Deng F, Millman JR, Pagliuca FW, DiIorio P, Rezania A, Gifford DK, Melton DA (2014) Differentiated human stem cells resemble fetal, not adult, beta cells. Proc Natl Acad Sci USA 111:3038–3043
CrossRef Google scholar
[53]
Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley NA (2015) Human pancreas development. Development 142:3126–3137
CrossRef Google scholar
[54]
Jiang K, Chaimov D, Patel SN, Liang JP, Wiggins SC, Samojlik MM, Rubiano A, Simmons CS, Stabler CL (2019) 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 198:37–48
CrossRef Google scholar
[55]
Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, Grapin-Botton A (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457–465
CrossRef Google scholar
[56]
Kasputis T, Clough D, Noto F, Rychel K, Dye B, Shea LD (2018) Microporous polymer scaffolds for the transplantation of embryonic stem cell derived pancreatic progenitors to a clinically translatable site for the treatment of type I diabetes. ACS Biomater Sci Eng 4:1770–1778
CrossRef Google scholar
[57]
Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, Richardson M, Carpenter MK, D’Amour KA, Kroon E (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29:750–756
CrossRef Google scholar
[58]
Kim Y, Kim H, Ko UH, Oh Y, Lim A, Sohn JW, Shin JH, Kim H, Han YM (2016) Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci Rep 6:35145
CrossRef Google scholar
[59]
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452
CrossRef Google scholar
[60]
Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M (2012) Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 8:274–284
CrossRef Google scholar
[61]
Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, Tang X, Candelario-Jalil E, Yang C, Nick H (2020) Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell Metab 32(1041–1051):e1046
CrossRef Google scholar
[62]
Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ (2020) SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54
CrossRef Google scholar
[63]
Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125
CrossRef Google scholar
[64]
Lee K, Cho H, Rickert RW, Li QV, Pulecio J, Leslie CS, Huangfu D (2019) FOXA2 is required for enhancer priming during pancreatic differentiation. Cell Rep 28(382–393):e387
CrossRef Google scholar
[65]
Leite NC, Sintov E, Meissner TB, Brehm MA, Greiner DL, Harlan DM, Melton DA (2020) Modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep 32:107894
CrossRef Google scholar
[66]
Lemper M, Leuckx G, Heremans Y, German MS, Heimberg H, Bouwens L, Baeyens L (2015) Reprogramming of human pancreatic exocrine cells to beta-like cells. Cell Death Differ 22:1117–1130
CrossRef Google scholar
[67]
Li M, Du W, Zhou M, Zheng L, Song E, Hou J (2018) Proteomic analysis of insulin secretory granules in INS-1 cells by protein correlation profiling. Biophys Rep 4:329–338
CrossRef Google scholar
[68]
Loomans CJM, Williams Giuliani N, Balak J, Ringnalda F, van Gurp L, Huch M, Boj SF, Sato T, Kester L, de Sousa Lopes SMC (2018) Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Rep 10:712–724
CrossRef Google scholar
[69]
Ma S, Viola R, Sui L, Cherubini V, Barbetti F, Egli D (2018) Beta cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Rep 11:1407–1415
CrossRef Google scholar
[70]
Mahaddalkar PU, Scheibner K, Pfluger S, Sterr M, Beckenbauer J, Irmler M, Beckers J, Knobel S, Lickert H (2020) Generation of pancreatic beta cells from CD177(+) anterior definitive endoderm. Nat Biotechnol 38:1061–1072
CrossRef Google scholar
[71]
Mamidi A, Prawiro C, Seymour PA, de Lichtenberg KH, Jackson A, Serup P, Semb H (2018) Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564:114–118
CrossRef Google scholar
[72]
Manzar GS, Kim EM, Zavazava N (2017) Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic beta cells. J Biol Chem 292:14066–14079
CrossRef Google scholar
[73]
Mattsson G (2005) The endothelial cells in islets of langerhans. Ups J Med Sci 110:1–15
CrossRef Google scholar
[74]
Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, Morikawa S, Urano F, Millman JR (2020) Geneedited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med12
CrossRef Google scholar
[75]
McGrath PS, Watson CL, Ingram C, Helmrath MA, Wells JM (2015) The basic helix-loop-helix transcription factor NEUROG3 is required for development of the human endocrine pancreas. Diabetes 64:2497–2505
CrossRef Google scholar
[76]
Meda P, Atwater I, Goncalves A, Bangham A, Orci L, Rojas E (1984) The topography of electrical synchrony among beta-cells in the mouse islet of Langerhans. Q J Exp Physiol 69:719–735
CrossRef Google scholar
[77]
Memon B, Karam M, Al-Khawaga S, Abdelalim EM (2018) Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1. Stem Cell Res Ther 9:15
CrossRef Google scholar
[78]
Millman JR, Xie C, Van Dervort A, Gurtler M, Pagliuca FW, Melton DA (2016) Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun 7:11463
CrossRef Google scholar
[79]
Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743–745
CrossRef Google scholar
[80]
Muniyappa R, Gubbi S (2020) COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 318:E736–E741
CrossRef Google scholar
[81]
Nair G, Hebrok M (2015) Islet formation in mice and men: lessons for the generation of functional insulin-producing beta-cells from human pluripotent stem cells. Curr Opin Genet Dev 32:171–180
CrossRef Google scholar
[82]
Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li ML, Nguyen VQ, Giacometti S (2019) Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived beta cells. Nat Cell Biol 21:263–274
CrossRef Google scholar
[83]
Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA 107:14152–14157
CrossRef Google scholar
[84]
Nessa A, Aziz QH, Thomas AM, Harmer SC, Tinker A, Hussain K (2015) Molecular mechanisms of congenital hyperinsulinism due to autosomal dominant mutations in ABCC8. Hum Mol Genet 24:5142–5153
CrossRef Google scholar
[85]
Nostro MC, Sarangi F, Yang C, Holland A, Elefanty AG, Stanley EG, Greiner DL, Keller G (2015) Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports 4:591–604
CrossRef Google scholar
[86]
Nyeng P, Heilmann S, Lof-Ohlin ZM, Pettersson NF, Hermann FM, Reynolds AB, Semb H (2019) p120ctn-mediated organ patterning precedes and determines pancreatic progenitor fate. Dev Cell 49 (31–47):e39
CrossRef Google scholar
[87]
Oakie A, Li J, Fellows GF, Hess DA, Wang R (2018) Characterization and differentiation of sorted human fetal pancreatic ALDH(hi) and ALDH(hi)/CD133(+) cells toward insulin-expressing cells. Stem Cells Dev 27:275–286
CrossRef Google scholar
[88]
Ojaghi M, Soleimanifar F, Kazemi A, Ghollasi M, Soleimani M, Nasoohi N, Enderami SE (2019) Electrospun poly-l-lactic acid/ polyvinyl alcohol nanofibers improved insulin-producing cell differentiation potential of human adipose-derived mesenchymal stem cells. J Cell Biochem 120:9917–9926
CrossRef Google scholar
[89]
Okita K, Ichisaka T, Yamanaka S (2007) Generation of germlinecompetent induced pluripotent stem cells. Nature 448:313–317
CrossRef Google scholar
[90]
Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22:1998–2021
CrossRef Google scholar
[91]
Op de Beeck A, Eizirik DL (2016) Viral infections in type 1 diabetes mellitus–why the beta cells? Nat Rev Endocrinol 12:263–273
CrossRef Google scholar
[92]
O’Sullivan ES, Vegas A, Anderson DG, Weir GC (2011) Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 32:827–844
CrossRef Google scholar
[93]
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic β cells in vitro. Cell 159:428–439
CrossRef Google scholar
[94]
Pathak S, Pham TT, Jeong JH, Byun Y (2019) Immunoisolation of pancreatic islets via thin-layer surface modification. J Control Release 305:176–193
CrossRef Google scholar
[95]
Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AM (2015) A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 33:518–523
CrossRef Google scholar
[96]
Petersen MBK, Goncalves CAC, Kim YH, Grapin-Botton A (2018) Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Curr Top Dev Biol 129:143–190
CrossRef Google scholar
[97]
Phelps EA, Headen DM, Taylor WR, Thule PM, Garcia AJ (2013) Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34:4602–4611
CrossRef Google scholar
[98]
Pictet RL, Clark WR, Williams RH, Rutter WJ (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 29:436–467
CrossRef Google scholar
[99]
Qadir MMF, Alvarez-Cubela S, Klein D, Lanzoni G, Garcia-Santana C, Montalvo A, Placeres-Uray F, Mazza EMC, Ricordi C, Inverardi LA (2018) P2RY1/ALK3-expressing cells within the adult human exocrine pancreas are BMP-7 expandable and exhibit progenitor-like characteristics. Cell Rep 22:2408–2420
CrossRef Google scholar
[100]
Qadir MMF, Alvarez-Cubela S, Klein D, van Dijk J, Muniz-Anquela R, Moreno-Hernandez YB, Lanzoni G, Sadiq S, Navarro-Rubio B, Garcia MT (2020) Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc Natl Acad Sci USA 117:10876–10887
CrossRef Google scholar
[101]
Ranjan AK, Joglekar MV, Hardikar AA (2009) Endothelial cells in pancreatic islet development and function. Islets 1:2–9
CrossRef Google scholar
[102]
Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O’Neil JJ (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029
CrossRef Google scholar
[103]
Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O’Neil JJ, Kieffer TJ (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442
CrossRef Google scholar
[104]
Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133
CrossRef Google scholar
[105]
Rodriguez-Seguel E, Mah N, Naumann H, Pongrac IM, Cerda-Esteban N, Fontaine JF, Wang Y, Chen W, Andrade-Navarro MA, Spagnoli FM (2013) Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage diver-gence. Genes Dev 27:1932–1946
CrossRef Google scholar
[106]
Rohayem J, Ehlers C, Wiedemann B, Holl R, Oexle K, Kordonouri O, Salzano G, Meissner T, Burger W, Schober E (2011) Diabetes and neurodegeneration in Wolfram syndrome: a multicenter study of phenotype and genotype. Diabetes Care 34:1503–1510
CrossRef Google scholar
[107]
Romer AI, Singer RA, Sui L, Egli D, Sussel L (2019) Murine perinatal beta-cell proliferation and the differentiation of human stem cellderived insulin-expressing cells require NEUROD1. Diabetes 68:2259–2271
CrossRef Google scholar
[108]
Rosado-Olivieri EA, Anderson K, Kenty JH, Melton DA (2019) YAP inhibition enhances the differentiation of functional stem cellderived insulin-producing beta cells. Nat Commun 10:1464
CrossRef Google scholar
[109]
Rosado-Olivieri EA, Aigha II, Kenty JH, Melton DA (2020) Identification of a LIF-responsive, replication-competent subpopulation of human beta cells. Cell Metab 31(327–338):e326
CrossRef Google scholar
[110]
Roscioni SS, Migliorini A, Gegg M, Lickert H (2016) Impact of islet architecture on beta-cell heterogeneity, plasticity and function. Nat Rev Endocrinol 12:695–709
CrossRef Google scholar
[111]
Rossen NS, Anandakumaran PN, Zur Nieden R, Lo K, Luo W, Park C, Huyan C, Fu Q, Song Z, Singh-Moon RP (2020) Injectable therapeutic organoids using sacrificial hydrogels. iScience 23:101052
CrossRef Google scholar
[112]
Rukstalis JM, Habener JF (2007) Snail2, a mediator of epithelialmesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr Patterns 7:471–479
CrossRef Google scholar
[113]
Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34:1759–1772
CrossRef Google scholar
[114]
Russell R, Carnese PP, Hennings TG, Walker EM, Russ HA, Liu JS, Giacometti S, Stein R, Hebrok M (2020) Loss of the transcription factor MAFB limits beta-cell derivation from human PSCs. Nat Commun 11:2742
CrossRef Google scholar
[115]
Saarimaki-Vire J, Balboa D, Russell MA, Saarikettu J, Kinnunen M, Keskitalo S, Malhi A, Valensisi C, Andrus C, Eurola S (2017) An activating STAT3 mutation causes neonatal diabetes through premature induction of pancreatic differentiation. Cell Rep 19:281–294
CrossRef Google scholar
[116]
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843
CrossRef Google scholar
[117]
Schutgens F, Clevers H (2020) Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol 15:211–234
CrossRef Google scholar
[118]
Shang L, Hua H, Foo K, Martinez H, Watanabe K, Zimmer M, Kahler DJ, Freeby M, Chung W, LeDuc C (2014) beta-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 63:923–933
CrossRef Google scholar
[119]
Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK, Melton DA (2019) Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep 27(2281–2291):e2285
CrossRef Google scholar
[120]
Shi ZD, Lee K, Yang D, Amin S, Verma N, Li QV, Zhu Z, Soh CL, Kumar R, Evans T (2017) Genome editing in hPSCs reveals GATA6 haploinsufficiency and a genetic interaction with GATA4 in human pancreatic development. Cell Stem Cell 20(675–688): e676
CrossRef Google scholar
[121]
Shih HP, Wang A, Sander M (2013) Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 29:81–105
CrossRef Google scholar
[122]
Sneddon JB, Tang Q, Stock P, Bluestone JA, Roy S, Desai T, Hebrok M (2018) Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 22:810–823
CrossRef Google scholar
[123]
Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21:599–609
CrossRef Google scholar
[124]
Suzuki T, Itoh Y, Sakai Y, Saito A, Okuzaki D, Motooka D, Minami S, Kobayashi T, Yamamoto T, Okamoto T (2020) Generation of human bronchial organoids for SARS-CoV-2 research. bioRxiv
CrossRef Google scholar
[125]
Takahashi Y, Sekine K, Kin T, Takebe T, Taniguchi H (2018a) Selfcondensation culture enables vascularization of tissue fragments for efficient therapeutic transplantation. Cell Rep 23:1620–1629
CrossRef Google scholar
[126]
Takahashi Y, Takebe T, Taniguchi H (2018b) Methods for generating vascularized islet-like organoids via self-condensation. Curr Protoc Stem Cell Biol 45:e49
CrossRef Google scholar
[127]
Tao T, Wang Y, Chen W, Li Z, Su W, Guo Y, Deng P, Qin J (2019) Engineering human islet organoids from iPSCs using an organon-chip platform. Lab Chip 19:948–958
CrossRef Google scholar
[128]
Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154
CrossRef Google scholar
[129]
Toyoda T, Mae S, Tanaka H, Kondo Y, Funato M, Hosokawa Y, Sudo T, Kawaguchi Y, Osafune K (2015) Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 14:185–197
CrossRef Google scholar
[130]
Van de Casteele M, Leuckx G, Baeyens L, Cai Y, Yuchi Y, Coppens V, De Groef S, Eriksson M, Svensson C, Ahlgren U (2013) Neurogenin 3+ cells contribute to beta-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis 4: e523
CrossRef Google scholar
[131]
Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, Millman JR (2019) Acquisition of dynamic function in human stem cell-derived beta cells. Stem Cell Rep 12:351–365
CrossRef Google scholar
[132]
Velazco-Cruz L, Goedegebuure MM, Maxwell KG, Augsornworawat P, Hogrebe NJ, Millman JR (2020) SIX2 regulates human beta cell differentiation from stem cells and functional maturation in vitro. Cell Rep 31:107687
CrossRef Google scholar
[133]
Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH, Harb G, Poh YC, Sintov E, Gurtler M, Pagliuca FW (2019) Charting cellular identity during human in vitro beta-cell differentiation. Nature 569:368–373
CrossRef Google scholar
[134]
Vethe H, Bjorlykke Y, Ghila LM, Paulo JA, Scholz H, Gygi SP, Chera S, Raeder H (2017) Probing the missing mature beta-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci Rep 7:4780
CrossRef Google scholar
[135]
Viacyte (2014) A safety, tolerability, and efficacy study of VC-01TM combination product in subjects with type I diabetes mellitus
[136]
Viacyte (2016) One-year follow-up safety study in subjects previ-ously implanted with VC-01™
[137]
Viacyte (2017a) A safety and tolerability study of VC-02 TM combination product in subjects with type 1 diabetes mellitus
[138]
Viacyte (2017b) A safety, tolerability, and efficacy study of VC-02 TM combination product in subjects with type 1 diabetes mellitus and hypoglycemia unawareness
[139]
Viacyte (2019) A study to evaluate safety, engraftment, and efficacy of VC-01 in subjects with T1 diabetes mellitus
[140]
Wan J, Huang Y, Zhou P, Guo Y, Wu C, Zhu S, Wang Y, Wang L, Lu Y, Wang Z (2017) Culture of iPSCs derived pancreatic beta-like cells in vitro using decellularized pancreatic scaffolds: a preliminary trial. Biomed Res Int 2017:4276928
CrossRef Google scholar
[141]
Wang L, Zhan Y, Song E, Yu Y, Jiu Y, Du W, Lu J, Liu P, Xu P, Xu T (2011) HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus. Protein Cell 2:74–85
CrossRef Google scholar
[142]
Wang W, Jin S, Ye K (2017) Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds. Stem Cells Dev 26:394–404
CrossRef Google scholar
[143]
Wang D, Wang J, Bai L, Pan H, Feng H, Clevers H, Zeng YA (2020) Long-term expansion of pancreatic islet organoids from resident procr(+) progenitors. Cell 180(1198–1211):e1119
CrossRef Google scholar
[144]
Wei P, Li L, Qi H, Zhou HX, Deng CY, Li FR (2012) Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells. Biochem Biophys Res Commun 418:330–335
CrossRef Google scholar
[145]
Wei Z, Yoshihara E, He N, Hah N, Fan W, Pinto AFM, Huddy T, Wang Y, Ross B, Estepa G (2018) Vitamin D switches BAF complexes to protect beta cells. Cell 173(1135–1149):e1115
CrossRef Google scholar
[146]
Weng C, Xi J, Li H, Cui J, Gu A, Lai S, Leskov K, Ke L, Jin F, Li Y (2020) Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat Metab 2:1443–1458
CrossRef Google scholar
[147]
Wesolowska-Andersen A, Jensen RR, Alcántara MP, Beer NL, Duff C, Nylander V, Gosden M, Witty L, Bowden R, McCarthy MI (2020) Analysis of differentiation protocols defines a common pancreatic progenitor molecular signature and guides refinement of endocrine differentiation. Stem Cell Rep 14:138–153
CrossRef Google scholar
[148]
Wu Y, Chang T, Long Y, Huang H, Kandeel F, Yee JK (2019) Using gene editing to establish a safeguard system for pluripotent stemcell-based therapies. iScience 22:409–422
CrossRef Google scholar
[149]
Yabe SG, Iwasaki N, Yasuda K, Hamazaki TS, Konno M, Fukuda S, Takeda F, Kasuga M, Okochi H (2015) Establishment of maturityonset diabetes of the young-induced pluripotent stem cells from a Japanese patient. J Diabetes Investig 6:543–547
CrossRef Google scholar
[150]
Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffre F (2020) A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell 27 (125–136):e127
[151]
Yoshihara E, Wei Z, Lin CS, Fang S, Ahmadian M, Kida Y, Tseng T, Dai Y, Yu RT, Liddle C (2016) ERRgamma is required for the metabolic maturation of therapeutically functional glucose-responsive beta cells. Cell Metab 23:622–634
CrossRef Google scholar
[152]
Yoshihara E, O’Connor C, Gasser E, Wei Z, Oh TG, Tseng TW, Wang D, Cayabyab F, Dai Y, Yu RT (2020) Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586:606–611
CrossRef Google scholar
[153]
Youn DY, Xiaoli AM, Pessin JE, Yang F (2016) Regulation of metabolism by the Mediator complex. Biophys Rep 2:69–77
CrossRef Google scholar
[154]
Youngblood RL, Sampson JP, Lebioda KR, Shea LD (2019) Microporous scaffolds support assembly and differentiation of pancreatic progenitors into beta-cell clusters. Acta Biomater 96:111–122
CrossRef Google scholar
[155]
Yu XX, Xu CR (2020) Understanding generation and regeneration of pancreatic beta cells from a single-cell perspective. Development147
CrossRef Google scholar
[156]
Zeng H, Guo M, Zhou T, Tan L, Chong CN, Zhang T, Dong X, Xiang JZ, Yu AS, Yue L (2016) An isogenic human ESC platform for functional evaluation of genome-wide-association-study-identified diabetes genes and drug discovery. Cell Stem Cell 19:326–340
CrossRef Google scholar
[157]
Zhang X, McGrath PS, Salomone J, Rahal M, McCauley HA, Schweitzer J, Kovall R, Gebelein B, Wells JM (2019) A comprehensive structure-function study of neurogenin3 disease-causing alleles during human pancreas and intestinal organoid development. Dev Cell 50(367–380):e367
CrossRef Google scholar
[158]
Zhou T, Kim TW, Chong CN, Tan L, Amin S, Sadat Badieyan Z, Mukherjee S, Ghazizadeh Z, Zeng H, Guo M (2018) A hPSC-based platform to discover gene-environment interactions that impact human beta-cell and dopamine neuron survival. Nat Commun 9:4815
CrossRef Google scholar
[159]
Zhou X, Nair GG, Russ HA, Belair CD, Li ML, Shveygert M, Hebrok M, Blelloch R (2020) LIN28B impairs the transition of hESC- derived beta cells from the juvenile to adult state. Stem Cell Rep 14:9–20
CrossRef Google scholar
[160]
Zhu P, Fan Z (2018) Cancer stem cells and tumorigenesis. Biophys Rep 4:178–188
CrossRef Google scholar
[161]
Zhu Z, Li QV, Lee K, Rosen BP, Gonzalez F, Soh CL, Huangfu D (2016) Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell 18:755–768
CrossRef Google scholar
[162]
Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, Lei F, Wang H, Xie J, Wang W (2020) Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab 31(1068–1077):e1063
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(1340 KB)

Accesses

Citations

Detail

Sections
Recommended

/