Islet organoid as a promising model for diabetes
Xiaofei Zhang, Zhuo Ma, Eli Song, Tao Xu
Islet organoid as a promising model for diabetes
Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development invitroand provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an invitrohuman organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.
islet organoid / diabetes / pluripotent/adult stem cell / pancreatic β cell / disease model
[1] |
Aamodt KI, Powers AC (2017) Signals in the pancreatic islet microenvironment influence beta-cell proliferation. Diabetes Obes Metab 19(Suppl 1):124–136
CrossRef
Google scholar
|
[2] |
Aguayo-Mazzucato C, Bonner-Weir S (2018) Pancreatic beta cell regeneration as a possible therapy for diabetes. Cell Metab 27:57–67
CrossRef
Google scholar
|
[3] |
Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, Kelly JR, Haakmeester C, Srijemac R, Wilson AZ
CrossRef
Google scholar
|
[4] |
Ahren B (2000) Autonomic regulation of islet hormone secretionimplications for health and disease. Diabetologia 43:393–410
CrossRef
Google scholar
|
[5] |
Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, Straubhaar JR, Meissner A, Melton DA (2020) Circadian entrainment triggers maturation of human in vitro islets. Cell Stem Cell 26(108–122):e110
CrossRef
Google scholar
|
[6] |
Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, Semb H (2017) Efficient generation of glucose-responsive beta cells from isolated GP2(+) human pancreatic progenitors. Cell Rep 19:36–49
CrossRef
Google scholar
|
[7] |
Amin S, Cook B, Zhou T, Ghazizadeh Z, Lis R, Zhang T, Khalaj M, Crespo M, Perera M, Xiang JZ
CrossRef
Google scholar
|
[8] |
Arrojo e Drigo R, Ali Y, Diez J, Srinivasan DK, Berggren PO, Boehm BO (2015) New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 58:2218–2228
CrossRef
Google scholar
|
[9] |
Asahara S, Etoh H, Inoue H, Teruyama K, Shibutani Y, Ihara Y, Kawada Y, Bartolome A, Hashimoto N, Matsuda T
CrossRef
Google scholar
|
[10] |
Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148:1160–1171
CrossRef
Google scholar
|
[11] |
Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR (2020) Single-cell transcriptome profiling reveals beta cell maturation in stem cell-derived islets after transplantation. Cell Rep 32:108067
CrossRef
Google scholar
|
[12] |
Bader E, Migliorini A, Gegg M, Moruzzi N, Gerdes J, Roscioni SS, Bakhti M, Brandl E, Irmler M, Beckers J
CrossRef
Google scholar
|
[13] |
Bakhti M, Scheibner K, Tritschler S, Bastidas-Ponce A, Tarquis-Medina M, Theis FJ, Lickert H (2019) Establishment of a highresolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol Metab 30:16–29
CrossRef
Google scholar
|
[14] |
Balboa D, Saarimaki-Vire J, Borshagovski D, Survila M, Lindholm P, Galli E, Eurola S, Ustinov J, Grym H, Huopio H
CrossRef
Google scholar
|
[15] |
Basford CL, Prentice KJ, Hardy AB, Sarangi F, Micallef SJ, Li X, Guo Q, Elefanty AG, Stanley EG, Keller G
CrossRef
Google scholar
|
[16] |
Bi H, Ye K, Jin S (2020) Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials 233:119673
CrossRef
Google scholar
|
[17] |
Bishay RH, Greenfield JR (2016) A review of maturity onset diabetes of the young (MODY) and challenges in the management of glucokinase-MODY. Med J Aust 205:480–485
CrossRef
Google scholar
|
[18] |
Borden P, Houtz J, Leach SD, Kuruvilla R (2013) Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep 4:287–301
CrossRef
Google scholar
|
[19] |
Bornstein SR, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, Boehm B, Amiel S, Holt RIG, Skyler JS
CrossRef
Google scholar
|
[20] |
Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097
CrossRef
Google scholar
|
[21] |
Broda TR, McCracken KW, Wells JM (2019) Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc 14:28–50
CrossRef
Google scholar
|
[22] |
Bruin JE, Erener S, Vela J, Hu X, Johnson JD, Kurata HT, Lynn FC, Piret JM, Asadi A, Rezania A
CrossRef
Google scholar
|
[23] |
Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggrern PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334–2339
CrossRef
Google scholar
|
[24] |
Cai EP, Ishikawa Y, Zhang W, Leite NC, Li J, Hou S, Kiaf B, Hollister-Lock J, Yilmaz NK, Schiffer CA
CrossRef
Google scholar
|
[25] |
Candiello J, Grandhi TSP, Goh SK, Vaidya V, Lemmon-Kishi M, Eliato KR, Ros R, Kumta PN, Rege K, Banerjee I (2018) 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177:27–39
CrossRef
Google scholar
|
[26] |
Cardenas-Diaz FL, Osorio-Quintero C, Diaz-Miranda MA, Kishore S, Leavens K, Jobaliya C, Stanescu D, Ortiz-Gonzalez X, Yoon C, Chen CS
CrossRef
Google scholar
|
[27] |
Chen YJ, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, Yang C, Maehr R, Zhou Q, Shemer R
CrossRef
Google scholar
|
[28] |
Choi KM, Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, Park JK (2008) Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng 105:586–594
CrossRef
Google scholar
|
[29] |
Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597
CrossRef
Google scholar
|
[30] |
Coate KC, Cha J, Shrestha S, Wang W, Goncalves LM, Almaca J, Kapp ME, Fasolino M, Morgan A, Dai C
CrossRef
Google scholar
|
[31] |
Cogger KF, Sinha A, Sarangi F, McGaugh EC, Saunders D, Dorrell C, Mejia-Guerrero S, Aghazadeh Y, Rourke JL, Screaton RA
CrossRef
Google scholar
|
[32] |
Cooper-Jones B, Ford C (2016) Islet cell replacement therapy for insulin-dependent diabetes. In: CADTH Issues in Emerging Health Technologies (Ottawa (ON)), pp 1–9
|
[33] |
D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401
CrossRef
Google scholar
|
[34] |
Davis JC, Alves TC, Helman A, Chen JC, Kenty JH, Cardone RL, Liu DR, Kibbey RG, Melton DA (2020) Glucose response by stem cell-derived beta cells in vitro is inhibited by a bottleneck in glycolysis. Cell Rep 31:107623
CrossRef
Google scholar
|
[35] |
de Vargas LM, Sobolewski J, Siegel R, Moss LG (1997) Individual beta cells within the intact islet differentially respond to glucose. J Biol Chem 272:26573–26577
CrossRef
Google scholar
|
[36] |
Dominguez-Bendala J, Qadir MMF, Pastori RL (2019) Pancreatic progenitors: there and back again. Trends Endocrinol Metab 30:4–11
CrossRef
Google scholar
|
[37] |
Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46
CrossRef
Google scholar
|
[38] |
Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cellderived 3D organoid systems. Trends Mol Med 23:393–410
CrossRef
Google scholar
|
[39] |
Dwivedi OP, Lehtovirta M, Hastoy B, Chandra V, Krentz NAJ, Kleiner S, Jain D, Richard AM, Abaitua F, Beer NL
CrossRef
Google scholar
|
[40] |
Eberhard D, Kragl M, Lammert E (2010) ‘Giving and taking’: endothelial and beta-cells in the islets of Langerhans. Trends Endocrinol Metab 21:457–463
CrossRef
Google scholar
|
[41] |
Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254
CrossRef
Google scholar
|
[42] |
Ghazizadeh Z, Kao DI, Amin S, Cook B, Rao S, Zhou T, Zhang T, Xiang Z, Kenyon R, Kaymakcalan O
CrossRef
Google scholar
|
[43] |
Giobbe GG, Crowley C, Luni C, Campinoti S, Khedr M, Kretzschmar K, De Santis MM, Zambaiti E, Michielin F, Meran L
CrossRef
Google scholar
|
[44] |
Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A (2011) Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn 240:589–604
CrossRef
Google scholar
|
[45] |
Greggio C, De Franceschi F, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H, Lutolf M, Grapin-Botton A (2013) Artificial threedimensional niches deconstruct pancreas development in vitro. Development 140:4452–4462
CrossRef
Google scholar
|
[46] |
Guo D, Liu H, Ruzi A, Gao G, Nasir A, Liu Y, Yang F, Wu F, Xu G, Li YX (2017) Modeling congenital hyperinsulinism with ABCC8-deficient human embryonic stem cells generated by CRISPR/ Cas9. Sci Rep 7:3156
CrossRef
Google scholar
|
[47] |
Habener JF (2004) A perspective on pancreatic stem/progenitor cells. Pediatr Diabetes 5(Suppl 2):29–37
CrossRef
Google scholar
|
[48] |
Han X, Wang M, Duan S, Franco PJ, Kenty JH, Hedrick P, Xia Y, Allen A, Ferreira LMR, Strominger JL
CrossRef
Google scholar
|
[49] |
Han Y, Yang L, Duan X, Duan F, Nilsson-Payant BE, Yaron TM, Wang P, Tang X, Zhang T, Zhao Z
CrossRef
Google scholar
|
[50] |
Helman A, Cangelosi AL, Davis JC, Pham Q, Rothman A, Faust AL, Straubhaar JR, Sabatini DM, Melton DA (2020) A nutrientsensing transition at birth triggers glucose-responsive insulin secretion. Cell Metab 31(1004–1016):e1005
CrossRef
Google scholar
|
[51] |
Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR (2020) Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 38:460–470
CrossRef
Google scholar
|
[52] |
Hrvatin S, O’Donnell CW, Deng F, Millman JR, Pagliuca FW, DiIorio P, Rezania A, Gifford DK, Melton DA (2014) Differentiated human stem cells resemble fetal, not adult, beta cells. Proc Natl Acad Sci USA 111:3038–3043
CrossRef
Google scholar
|
[53] |
Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley NA (2015) Human pancreas development. Development 142:3126–3137
CrossRef
Google scholar
|
[54] |
Jiang K, Chaimov D, Patel SN, Liang JP, Wiggins SC, Samojlik MM, Rubiano A, Simmons CS, Stabler CL (2019) 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 198:37–48
CrossRef
Google scholar
|
[55] |
Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, Grapin-Botton A (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457–465
CrossRef
Google scholar
|
[56] |
Kasputis T, Clough D, Noto F, Rychel K, Dye B, Shea LD (2018) Microporous polymer scaffolds for the transplantation of embryonic stem cell derived pancreatic progenitors to a clinically translatable site for the treatment of type I diabetes. ACS Biomater Sci Eng 4:1770–1778
CrossRef
Google scholar
|
[57] |
Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, Richardson M, Carpenter MK, D’Amour KA, Kroon E
CrossRef
Google scholar
|
[58] |
Kim Y, Kim H, Ko UH, Oh Y, Lim A, Sohn JW, Shin JH, Kim H, Han YM (2016) Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci Rep 6:35145
CrossRef
Google scholar
|
[59] |
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J
CrossRef
Google scholar
|
[60] |
Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M (2012) Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 8:274–284
CrossRef
Google scholar
|
[61] |
Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, Tang X, Candelario-Jalil E, Yang C, Nick H
CrossRef
Google scholar
|
[62] |
Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ
CrossRef
Google scholar
|
[63] |
Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125
CrossRef
Google scholar
|
[64] |
Lee K, Cho H, Rickert RW, Li QV, Pulecio J, Leslie CS, Huangfu D (2019) FOXA2 is required for enhancer priming during pancreatic differentiation. Cell Rep 28(382–393):e387
CrossRef
Google scholar
|
[65] |
Leite NC, Sintov E, Meissner TB, Brehm MA, Greiner DL, Harlan DM, Melton DA (2020) Modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep 32:107894
CrossRef
Google scholar
|
[66] |
Lemper M, Leuckx G, Heremans Y, German MS, Heimberg H, Bouwens L, Baeyens L (2015) Reprogramming of human pancreatic exocrine cells to beta-like cells. Cell Death Differ 22:1117–1130
CrossRef
Google scholar
|
[67] |
Li M, Du W, Zhou M, Zheng L, Song E, Hou J (2018) Proteomic analysis of insulin secretory granules in INS-1 cells by protein correlation profiling. Biophys Rep 4:329–338
CrossRef
Google scholar
|
[68] |
Loomans CJM, Williams Giuliani N, Balak J, Ringnalda F, van Gurp L, Huch M, Boj SF, Sato T, Kester L, de Sousa Lopes SMC
CrossRef
Google scholar
|
[69] |
Ma S, Viola R, Sui L, Cherubini V, Barbetti F, Egli D (2018) Beta cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Rep 11:1407–1415
CrossRef
Google scholar
|
[70] |
Mahaddalkar PU, Scheibner K, Pfluger S, Sterr M, Beckenbauer J, Irmler M, Beckers J, Knobel S, Lickert H (2020) Generation of pancreatic beta cells from CD177(+) anterior definitive endoderm. Nat Biotechnol 38:1061–1072
CrossRef
Google scholar
|
[71] |
Mamidi A, Prawiro C, Seymour PA, de Lichtenberg KH, Jackson A, Serup P, Semb H (2018) Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564:114–118
CrossRef
Google scholar
|
[72] |
Manzar GS, Kim EM, Zavazava N (2017) Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic beta cells. J Biol Chem 292:14066–14079
CrossRef
Google scholar
|
[73] |
Mattsson G (2005) The endothelial cells in islets of langerhans. Ups J Med Sci 110:1–15
CrossRef
Google scholar
|
[74] |
Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, Morikawa S, Urano F, Millman JR (2020) Geneedited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med12
CrossRef
Google scholar
|
[75] |
McGrath PS, Watson CL, Ingram C, Helmrath MA, Wells JM (2015) The basic helix-loop-helix transcription factor NEUROG3 is required for development of the human endocrine pancreas. Diabetes 64:2497–2505
CrossRef
Google scholar
|
[76] |
Meda P, Atwater I, Goncalves A, Bangham A, Orci L, Rojas E (1984) The topography of electrical synchrony among beta-cells in the mouse islet of Langerhans. Q J Exp Physiol 69:719–735
CrossRef
Google scholar
|
[77] |
Memon B, Karam M, Al-Khawaga S, Abdelalim EM (2018) Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1. Stem Cell Res Ther 9:15
CrossRef
Google scholar
|
[78] |
Millman JR, Xie C, Van Dervort A, Gurtler M, Pagliuca FW, Melton DA (2016) Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun 7:11463
CrossRef
Google scholar
|
[79] |
Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M
CrossRef
Google scholar
|
[80] |
Muniyappa R, Gubbi S (2020) COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 318:E736–E741
CrossRef
Google scholar
|
[81] |
Nair G, Hebrok M (2015) Islet formation in mice and men: lessons for the generation of functional insulin-producing beta-cells from human pluripotent stem cells. Curr Opin Genet Dev 32:171–180
CrossRef
Google scholar
|
[82] |
Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li ML, Nguyen VQ, Giacometti S
CrossRef
Google scholar
|
[83] |
Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA 107:14152–14157
CrossRef
Google scholar
|
[84] |
Nessa A, Aziz QH, Thomas AM, Harmer SC, Tinker A, Hussain K (2015) Molecular mechanisms of congenital hyperinsulinism due to autosomal dominant mutations in ABCC8. Hum Mol Genet 24:5142–5153
CrossRef
Google scholar
|
[85] |
Nostro MC, Sarangi F, Yang C, Holland A, Elefanty AG, Stanley EG, Greiner DL, Keller G (2015) Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports 4:591–604
CrossRef
Google scholar
|
[86] |
Nyeng P, Heilmann S, Lof-Ohlin ZM, Pettersson NF, Hermann FM, Reynolds AB, Semb H (2019) p120ctn-mediated organ patterning precedes and determines pancreatic progenitor fate. Dev Cell 49 (31–47):e39
CrossRef
Google scholar
|
[87] |
Oakie A, Li J, Fellows GF, Hess DA, Wang R (2018) Characterization and differentiation of sorted human fetal pancreatic ALDH(hi) and ALDH(hi)/CD133(+) cells toward insulin-expressing cells. Stem Cells Dev 27:275–286
CrossRef
Google scholar
|
[88] |
Ojaghi M, Soleimanifar F, Kazemi A, Ghollasi M, Soleimani M, Nasoohi N, Enderami SE (2019) Electrospun poly-l-lactic acid/ polyvinyl alcohol nanofibers improved insulin-producing cell differentiation potential of human adipose-derived mesenchymal stem cells. J Cell Biochem 120:9917–9926
CrossRef
Google scholar
|
[89] |
Okita K, Ichisaka T, Yamanaka S (2007) Generation of germlinecompetent induced pluripotent stem cells. Nature 448:313–317
CrossRef
Google scholar
|
[90] |
Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22:1998–2021
CrossRef
Google scholar
|
[91] |
Op de Beeck A, Eizirik DL (2016) Viral infections in type 1 diabetes mellitus–why the beta cells? Nat Rev Endocrinol 12:263–273
CrossRef
Google scholar
|
[92] |
O’Sullivan ES, Vegas A, Anderson DG, Weir GC (2011) Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 32:827–844
CrossRef
Google scholar
|
[93] |
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic β cells in vitro. Cell 159:428–439
CrossRef
Google scholar
|
[94] |
Pathak S, Pham TT, Jeong JH, Byun Y (2019) Immunoisolation of pancreatic islets via thin-layer surface modification. J Control Release 305:176–193
CrossRef
Google scholar
|
[95] |
Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AM (2015) A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 33:518–523
CrossRef
Google scholar
|
[96] |
Petersen MBK, Goncalves CAC, Kim YH, Grapin-Botton A (2018) Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Curr Top Dev Biol 129:143–190
CrossRef
Google scholar
|
[97] |
Phelps EA, Headen DM, Taylor WR, Thule PM, Garcia AJ (2013) Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34:4602–4611
CrossRef
Google scholar
|
[98] |
Pictet RL, Clark WR, Williams RH, Rutter WJ (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 29:436–467
CrossRef
Google scholar
|
[99] |
Qadir MMF, Alvarez-Cubela S, Klein D, Lanzoni G, Garcia-Santana C, Montalvo A, Placeres-Uray F, Mazza EMC, Ricordi C, Inverardi LA
CrossRef
Google scholar
|
[100] |
Qadir MMF, Alvarez-Cubela S, Klein D, van Dijk J, Muniz-Anquela R, Moreno-Hernandez YB, Lanzoni G, Sadiq S, Navarro-Rubio B, Garcia MT
CrossRef
Google scholar
|
[101] |
Ranjan AK, Joglekar MV, Hardikar AA (2009) Endothelial cells in pancreatic islet development and function. Islets 1:2–9
CrossRef
Google scholar
|
[102] |
Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O’Neil JJ
CrossRef
Google scholar
|
[103] |
Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O’Neil JJ, Kieffer TJ (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442
CrossRef
Google scholar
|
[104] |
Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T
CrossRef
Google scholar
|
[105] |
Rodriguez-Seguel E, Mah N, Naumann H, Pongrac IM, Cerda-Esteban N, Fontaine JF, Wang Y, Chen W, Andrade-Navarro MA, Spagnoli FM (2013) Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage diver-gence. Genes Dev 27:1932–1946
CrossRef
Google scholar
|
[106] |
Rohayem J, Ehlers C, Wiedemann B, Holl R, Oexle K, Kordonouri O, Salzano G, Meissner T, Burger W, Schober E
CrossRef
Google scholar
|
[107] |
Romer AI, Singer RA, Sui L, Egli D, Sussel L (2019) Murine perinatal beta-cell proliferation and the differentiation of human stem cellderived insulin-expressing cells require NEUROD1. Diabetes 68:2259–2271
CrossRef
Google scholar
|
[108] |
Rosado-Olivieri EA, Anderson K, Kenty JH, Melton DA (2019) YAP inhibition enhances the differentiation of functional stem cellderived insulin-producing beta cells. Nat Commun 10:1464
CrossRef
Google scholar
|
[109] |
Rosado-Olivieri EA, Aigha II, Kenty JH, Melton DA (2020) Identification of a LIF-responsive, replication-competent subpopulation of human beta cells. Cell Metab 31(327–338):e326
CrossRef
Google scholar
|
[110] |
Roscioni SS, Migliorini A, Gegg M, Lickert H (2016) Impact of islet architecture on beta-cell heterogeneity, plasticity and function. Nat Rev Endocrinol 12:695–709
CrossRef
Google scholar
|
[111] |
Rossen NS, Anandakumaran PN, Zur Nieden R, Lo K, Luo W, Park C, Huyan C, Fu Q, Song Z, Singh-Moon RP
CrossRef
Google scholar
|
[112] |
Rukstalis JM, Habener JF (2007) Snail2, a mediator of epithelialmesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr Patterns 7:471–479
CrossRef
Google scholar
|
[113] |
Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V
CrossRef
Google scholar
|
[114] |
Russell R, Carnese PP, Hennings TG, Walker EM, Russ HA, Liu JS, Giacometti S, Stein R, Hebrok M (2020) Loss of the transcription factor MAFB limits beta-cell derivation from human PSCs. Nat Commun 11:2742
CrossRef
Google scholar
|
[115] |
Saarimaki-Vire J, Balboa D, Russell MA, Saarikettu J, Kinnunen M, Keskitalo S, Malhi A, Valensisi C, Andrus C, Eurola S
CrossRef
Google scholar
|
[116] |
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K
CrossRef
Google scholar
|
[117] |
Schutgens F, Clevers H (2020) Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol 15:211–234
CrossRef
Google scholar
|
[118] |
Shang L, Hua H, Foo K, Martinez H, Watanabe K, Zimmer M, Kahler DJ, Freeby M, Chung W, LeDuc C
CrossRef
Google scholar
|
[119] |
Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK, Melton DA (2019) Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep 27(2281–2291):e2285
CrossRef
Google scholar
|
[120] |
Shi ZD, Lee K, Yang D, Amin S, Verma N, Li QV, Zhu Z, Soh CL, Kumar R, Evans T
CrossRef
Google scholar
|
[121] |
Shih HP, Wang A, Sander M (2013) Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 29:81–105
CrossRef
Google scholar
|
[122] |
Sneddon JB, Tang Q, Stock P, Bluestone JA, Roy S, Desai T, Hebrok M (2018) Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 22:810–823
CrossRef
Google scholar
|
[123] |
Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21:599–609
CrossRef
Google scholar
|
[124] |
Suzuki T, Itoh Y, Sakai Y, Saito A, Okuzaki D, Motooka D, Minami S, Kobayashi T, Yamamoto T, Okamoto T
CrossRef
Google scholar
|
[125] |
Takahashi Y, Sekine K, Kin T, Takebe T, Taniguchi H (2018a) Selfcondensation culture enables vascularization of tissue fragments for efficient therapeutic transplantation. Cell Rep 23:1620–1629
CrossRef
Google scholar
|
[126] |
Takahashi Y, Takebe T, Taniguchi H (2018b) Methods for generating vascularized islet-like organoids via self-condensation. Curr Protoc Stem Cell Biol 45:e49
CrossRef
Google scholar
|
[127] |
Tao T, Wang Y, Chen W, Li Z, Su W, Guo Y, Deng P, Qin J (2019) Engineering human islet organoids from iPSCs using an organon-chip platform. Lab Chip 19:948–958
CrossRef
Google scholar
|
[128] |
Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154
CrossRef
Google scholar
|
[129] |
Toyoda T, Mae S, Tanaka H, Kondo Y, Funato M, Hosokawa Y, Sudo T, Kawaguchi Y, Osafune K (2015) Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 14:185–197
CrossRef
Google scholar
|
[130] |
Van de Casteele M, Leuckx G, Baeyens L, Cai Y, Yuchi Y, Coppens V, De Groef S, Eriksson M, Svensson C, Ahlgren U
CrossRef
Google scholar
|
[131] |
Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, Millman JR (2019) Acquisition of dynamic function in human stem cell-derived beta cells. Stem Cell Rep 12:351–365
CrossRef
Google scholar
|
[132] |
Velazco-Cruz L, Goedegebuure MM, Maxwell KG, Augsornworawat P, Hogrebe NJ, Millman JR (2020) SIX2 regulates human beta cell differentiation from stem cells and functional maturation in vitro. Cell Rep 31:107687
CrossRef
Google scholar
|
[133] |
Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH, Harb G, Poh YC, Sintov E, Gurtler M, Pagliuca FW
CrossRef
Google scholar
|
[134] |
Vethe H, Bjorlykke Y, Ghila LM, Paulo JA, Scholz H, Gygi SP, Chera S, Raeder H (2017) Probing the missing mature beta-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci Rep 7:4780
CrossRef
Google scholar
|
[135] |
Viacyte (2014) A safety, tolerability, and efficacy study of VC-01TM combination product in subjects with type I diabetes mellitus
|
[136] |
Viacyte (2016) One-year follow-up safety study in subjects previ-ously implanted with VC-01™
|
[137] |
Viacyte (2017a) A safety and tolerability study of VC-02 TM combination product in subjects with type 1 diabetes mellitus
|
[138] |
Viacyte (2017b) A safety, tolerability, and efficacy study of VC-02 TM combination product in subjects with type 1 diabetes mellitus and hypoglycemia unawareness
|
[139] |
Viacyte (2019) A study to evaluate safety, engraftment, and efficacy of VC-01 in subjects with T1 diabetes mellitus
|
[140] |
Wan J, Huang Y, Zhou P, Guo Y, Wu C, Zhu S, Wang Y, Wang L, Lu Y, Wang Z (2017) Culture of iPSCs derived pancreatic beta-like cells in vitro using decellularized pancreatic scaffolds: a preliminary trial. Biomed Res Int 2017:4276928
CrossRef
Google scholar
|
[141] |
Wang L, Zhan Y, Song E, Yu Y, Jiu Y, Du W, Lu J, Liu P, Xu P, Xu T (2011) HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus. Protein Cell 2:74–85
CrossRef
Google scholar
|
[142] |
Wang W, Jin S, Ye K (2017) Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds. Stem Cells Dev 26:394–404
CrossRef
Google scholar
|
[143] |
Wang D, Wang J, Bai L, Pan H, Feng H, Clevers H, Zeng YA (2020) Long-term expansion of pancreatic islet organoids from resident procr(+) progenitors. Cell 180(1198–1211):e1119
CrossRef
Google scholar
|
[144] |
Wei P, Li L, Qi H, Zhou HX, Deng CY, Li FR (2012) Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells. Biochem Biophys Res Commun 418:330–335
CrossRef
Google scholar
|
[145] |
Wei Z, Yoshihara E, He N, Hah N, Fan W, Pinto AFM, Huddy T, Wang Y, Ross B, Estepa G
CrossRef
Google scholar
|
[146] |
Weng C, Xi J, Li H, Cui J, Gu A, Lai S, Leskov K, Ke L, Jin F, Li Y (2020) Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat Metab 2:1443–1458
CrossRef
Google scholar
|
[147] |
Wesolowska-Andersen A, Jensen RR, Alcántara MP, Beer NL, Duff C, Nylander V, Gosden M, Witty L, Bowden R, McCarthy MI
CrossRef
Google scholar
|
[148] |
Wu Y, Chang T, Long Y, Huang H, Kandeel F, Yee JK (2019) Using gene editing to establish a safeguard system for pluripotent stemcell-based therapies. iScience 22:409–422
CrossRef
Google scholar
|
[149] |
Yabe SG, Iwasaki N, Yasuda K, Hamazaki TS, Konno M, Fukuda S, Takeda F, Kasuga M, Okochi H (2015) Establishment of maturityonset diabetes of the young-induced pluripotent stem cells from a Japanese patient. J Diabetes Investig 6:543–547
CrossRef
Google scholar
|
[150] |
Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffre F
|
[151] |
Yoshihara E, Wei Z, Lin CS, Fang S, Ahmadian M, Kida Y, Tseng T, Dai Y, Yu RT, Liddle C
CrossRef
Google scholar
|
[152] |
Yoshihara E, O’Connor C, Gasser E, Wei Z, Oh TG, Tseng TW, Wang D, Cayabyab F, Dai Y, Yu RT
CrossRef
Google scholar
|
[153] |
Youn DY, Xiaoli AM, Pessin JE, Yang F (2016) Regulation of metabolism by the Mediator complex. Biophys Rep 2:69–77
CrossRef
Google scholar
|
[154] |
Youngblood RL, Sampson JP, Lebioda KR, Shea LD (2019) Microporous scaffolds support assembly and differentiation of pancreatic progenitors into beta-cell clusters. Acta Biomater 96:111–122
CrossRef
Google scholar
|
[155] |
Yu XX, Xu CR (2020) Understanding generation and regeneration of pancreatic beta cells from a single-cell perspective. Development147
CrossRef
Google scholar
|
[156] |
Zeng H, Guo M, Zhou T, Tan L, Chong CN, Zhang T, Dong X, Xiang JZ, Yu AS, Yue L
CrossRef
Google scholar
|
[157] |
Zhang X, McGrath PS, Salomone J, Rahal M, McCauley HA, Schweitzer J, Kovall R, Gebelein B, Wells JM (2019) A comprehensive structure-function study of neurogenin3 disease-causing alleles during human pancreas and intestinal organoid development. Dev Cell 50(367–380):e367
CrossRef
Google scholar
|
[158] |
Zhou T, Kim TW, Chong CN, Tan L, Amin S, Sadat Badieyan Z, Mukherjee S, Ghazizadeh Z, Zeng H, Guo M
CrossRef
Google scholar
|
[159] |
Zhou X, Nair GG, Russ HA, Belair CD, Li ML, Shveygert M, Hebrok M, Blelloch R (2020) LIN28B impairs the transition of hESC- derived beta cells from the juvenile to adult state. Stem Cell Rep 14:9–20
CrossRef
Google scholar
|
[160] |
Zhu P, Fan Z (2018) Cancer stem cells and tumorigenesis. Biophys Rep 4:178–188
CrossRef
Google scholar
|
[161] |
Zhu Z, Li QV, Lee K, Rosen BP, Gonzalez F, Soh CL, Huangfu D (2016) Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell 18:755–768
CrossRef
Google scholar
|
[162] |
Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, Lei F, Wang H, Xie J, Wang W
CrossRef
Google scholar
|
/
〈 | 〉 |