Sinoatrial node pacemaker cells: cardiomyocyte- or neuron-like cells?
Bin Zhou
Sinoatrial node pacemaker cells: cardiomyocyte- or neuron-like cells?
[1] |
Cingolani E, Goldhaber JI, Marbán E (2018) Next-generation pacemakers: from small devices to biological pacemakers. Nat Rev Cardiol 15:139–150
CrossRef
Google scholar
|
[2] |
De Ponti R, Marazzato J, Bagliani G, Leonelli FM, Padeletti L (2018) Sick sinus syndrome. Card Electrophysiol Clin 10:183–195
CrossRef
Google scholar
|
[3] |
Galang G, Mandla R, Ruan H, Jung C, Sinha T, Stone NR, Wu RS, Mannion BJ, Allu PKR, Chang K
CrossRef
Google scholar
|
[4] |
Herring N, Kalla M, Paterson DJ (2019) The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 16:707–726
CrossRef
Google scholar
|
[5] |
John RM, Kumar S (2016) Sinus node and atrial arrhythmias. Circulation 133:1892–1900
CrossRef
Google scholar
|
[6] |
Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ (2019) 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 74: e51–e156
CrossRef
Google scholar
|
[7] |
Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks control the timekeeping mechanism of the heart’s pacemaker. Circ Res 106:659–673
CrossRef
Google scholar
|
[8] |
Linscheid N, Logantha SJRJ, Poulsen PC, Zhang S, Schrölkamp M, Egerod KL, Thompson JJ, Kitmitto A, Galli G, Humphries MJ (2019) Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat Commun. 10:2889
CrossRef
Google scholar
|
[9] |
Lisman J, Cooper K, Sehgal M, Silva AJ (2018) Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21:309–314
CrossRef
Google scholar
|
[10] |
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME (2020) Pharmacologic approach to sinoatrial node dysfunction. Annu Rev Pharmacol Toxicol. https://doi.org/10. 1146/annurev-pharmtox-031120-115815
|
[11] |
Peters CH, Sharpe EJ, Proenza C (2020) Cardiac pacemaker activity and aging. Annu Rev Physiol 82:21–43
CrossRef
Google scholar
|
[12] |
Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L, Keller GM (2017) Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 35:56–68
CrossRef
Google scholar
|
[13] |
Satoh H (2003) Sino-atrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels. J Smooth Muscle Res 39:175–193
CrossRef
Google scholar
|
[14] |
Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, La Gerche A, Ackerman MJ, Borjesson M, Salerno JC (2018) International recommendations for electrocardiographic interpretation in athletes. Eur Heart J 39:1466–1480
CrossRef
Google scholar
|
[15] |
Shen MJ, Zipes DP (2014) Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 114:1004–1021
CrossRef
Google scholar
|
[16] |
Van Eif VW, Devalla HD, Boink GJ, Christoffels VM (2018) Transcriptional regulation of the cardiac conduction system. Nat Rev Cardiol 15:617–630
CrossRef
Google scholar
|
[17] |
Yaniv Y, Ahmet I, Liu J, Lyashkov AE, Guiriba TR, Okamoto Y, Ziman BD, Lakatta EG (2014) Synchronization of sinoatrial node pacemaker cell clocks and its autonomic modulation impart complexity to heart beating intervals. Heart Rhythm 11:1210–1219
CrossRef
Google scholar
|
[18] |
Yavari A, Bellahcene M, Bucchi A, Sirenko S, Pinter K, Herring N, Jung JJ, Tarasov KV, Sharpe EJ, Wolfien M (2017) Mammalian γ2 AMPK regulates intrinsic heart rate. Nat Commun 8:1258
CrossRef
Google scholar
|
/
〈 | 〉 |