The role of the gut microbiome and its metabolites in metabolic diseases
Jiayu Wu, Kai Wang, Xuemei Wang, Yanli Pang, Changtao Jiang
The role of the gut microbiome and its metabolites in metabolic diseases
It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases, while in recent years, accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic diseases, including obesity, type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular disease and so on. Numerous microorganisms dwell in the gastrointestinal tract, which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances, thus acting as a link between the gut microbiome and its host. The gut microbiome is shaped by host genetics, immune responses and dietary factors. The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases. Therefore, targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future. This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut microbiome-derived metabolites and the pathogenesis of many metabolic diseases. Furthermore, recent advances in improving metabolic diseases by regulating the gut microbiome will be discussed.
gut microbiome / metabolism / metabolite / immune regulation / metabolic diseases
[1] |
Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y, Ping J, Alikhan M, Clements BA, Abumrad NN, Flynn CR (2019) Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology 156:1041–1051.e1044
CrossRef
Google scholar
|
[2] |
Albenberg LG, Wu GD (2014) Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146:1564–1572
CrossRef
Google scholar
|
[3] |
Al-Lahham SH, Roelofsen H, Priebe M, Weening D, Dijkstra M, Hoek A, Rezaee F, Venema K, Vonk RJ (2010) Regulation of adipokine production in human adipose tissue by propionic acid. Eur J Clin Invest 40:401–407
CrossRef
Google scholar
|
[4] |
Aron-Wisnewsky J, Warmbrunn M, Nieuwdorp M, Clement K (2020) Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity? Gastroenterology 158:1881
CrossRef
Google scholar
|
[5] |
Bain CC, Cerovic V (2020) Interactions of the microbiota with the mucosal immune system. Immunology 159:1–3
CrossRef
Google scholar
|
[6] |
Bauere PV, Duca FA, Waise TMZ, Rasmussen BA, Abraham MA, Dranse HJ, Puri A, O’Brien CA, Lam TKT (2018) Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab 27:101–117
CrossRef
Google scholar
|
[7] |
Brandhorst S, Longo VD (2019) Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ Res 124:952–965
CrossRef
Google scholar
|
[8] |
Canfora EE, Meex RCR, Venema K, Blaak EE (2019) Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 15:261–273
CrossRef
Google scholar
|
[9] |
Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 111:2247–2252
CrossRef
Google scholar
|
[10] |
Corpeleijn E, Saris WH, Blaak EE (2009) Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev 10:178–193
CrossRef
Google scholar
|
[11] |
Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227
CrossRef
Google scholar
|
[12] |
da Cabo R, Mattson MP (2019) Effects of intermittent fasting on health, aging, and disease. N Engl J Med 381:2541–2551
CrossRef
Google scholar
|
[13] |
Da Silva HE, Teterina A, Comelli EM, Taibi A, Arendt BM, Fischer SE, Lou W, Allard JP (2018) Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep 8:1466
CrossRef
Google scholar
|
[14] |
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA
CrossRef
Google scholar
|
[15] |
de Vegt F, Dekker JM, Jager A, Hienkens E, Kostense PJ, Stehouwer CD, Nijpels G, Bouter LM, Heine RJ (2001) Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: the Hoorn Study. JAMA 285:2109–2113
CrossRef
Google scholar
|
[16] |
Di Francesco A, Di Germanio C, Bernier M, de Cabo R (2018) A time to fast. Science 362:770–775
CrossRef
Google scholar
|
[17] |
Duboc H, Taché Y, Hofmann AF (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 46:302–312
CrossRef
Google scholar
|
[18] |
Eloe-Fadrosh EA, Brady A, Crabtree J, Drabek EF, Ma B, Mahurkar A, Ravel J, Haverkamp M, Fiorino AM, Botelho C
CrossRef
Google scholar
|
[19] |
Enck K, Banks S, Yadav H, Welker ME, Opara EC (2020) Development of a novel oral delivery vehicle for probiotics. Curr Pharm Des 26:3134
CrossRef
Google scholar
|
[20] |
Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, De Noni I, Stuknyte M, Chouaia B, Riso P, Guglielmetti S (2014) Modulation of fecal clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr 144:1787–1796
CrossRef
Google scholar
|
[21] |
Forslund K, Hidebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottri V, Pedersen KH
CrossRef
Google scholar
|
[22] |
Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S
CrossRef
Google scholar
|
[23] |
Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, Zhu QY, Zhang T, Lelanc M, Liu SH
CrossRef
Google scholar
|
[24] |
Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, Guo C, Higginbottom S, Almo SC, Fischbach MA (2020) A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582:566–570
CrossRef
Google scholar
|
[25] |
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD
CrossRef
Google scholar
|
[26] |
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24:392–400
CrossRef
Google scholar
|
[27] |
Grundy SM (2012) Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol 59:635–643
CrossRef
Google scholar
|
[28] |
Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong J
CrossRef
Google scholar
|
[29] |
Guo Y, Qi Y, Yang X, Zhao L, Wen S, Liu Y, Tang L (2016) Association between polycystic ovary syndrome and gut microbiota. PLoS ONE 11:e0153196
CrossRef
Google scholar
|
[30] |
Guo CJ, Allen BM, Hiam KJ, Dodd D, Van Treuren W, Higginbottom S, Nagashima K, Fischer CR, Sonnenburg JL, Spitzer MH
CrossRef
Google scholar
|
[31] |
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L
CrossRef
Google scholar
|
[32] |
Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JAJ (2012) Timerestricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860
CrossRef
Google scholar
|
[33] |
Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. Engl J Med 376:254–266
CrossRef
Google scholar
|
[34] |
Huang FJ, Zheng XJ, Ma XH, Jiang RQ, Zhou WY, Zhou SP, Zhang YJ, Lei S, Wang SL, Kuang JL
CrossRef
Google scholar
|
[35] |
Huang ZR, Deng JC, Li QY, Cao YJ, Lin YC, Bai WD, Liu B, Rao PF, Ni L, Lv XC (2020) Protective Mechanism of Common Buckwheat (Fagopyrum esculentum Moench.) against nonalcoholic fatty liver disease associated with dyslipidemia in mice fed a high-fat and high-cholesterol diet. J Agric Food Chem 68:6530–6543
CrossRef
Google scholar
|
[36] |
Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–1781
CrossRef
Google scholar
|
[37] |
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21:8787–8803
CrossRef
Google scholar
|
[38] |
Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH
CrossRef
Google scholar
|
[39] |
Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, Patterson BW, Horton JD, Mittendorfer B, Hotamisligil GS
CrossRef
Google scholar
|
[40] |
Kelley ST, Skarra DV, Rivera AJ, Thackray VG (2016) The gut microbiome is altered in a letrozole-induced mouse model of polycystic ovary syndrome. PLoS ONE 11:e0146509
CrossRef
Google scholar
|
[41] |
Kim DM (2015) Gut microbiota-mediated drug-antibiotic interactions. Drug Metab Dispos 43:1581–1589
CrossRef
Google scholar
|
[42] |
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403
CrossRef
Google scholar
|
[43] |
Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Bjorck I, Backhed F (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab 22:971–982
CrossRef
Google scholar
|
[44] |
Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O (2016) Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 8:52
CrossRef
Google scholar
|
[45] |
Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F, Blottiere HM (2018) SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep 8:74
CrossRef
Google scholar
|
[46] |
Larsson H, Lindgärde F, Berglund G, Ahrén B (2000) Prediction of diabetes using ADA or WHO criteria in post-menopausal women: a 10-year follow-up study. Diabetologia 43:1224–1228
CrossRef
Google scholar
|
[47] |
Laursen MF, Laursen RP, Larnkjær A, Michaelsen KF, Bahl MI, Licht TR (2017) Administration of two probiotic strains during early childhood does not affect the endogenous gut microbiota composition despite probiotic proliferation. BMC Microbiol. https://doi.org/10.1186/s12866-017-1090-7
CrossRef
Google scholar
|
[48] |
Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A
CrossRef
Google scholar
|
[49] |
Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y
CrossRef
Google scholar
|
[50] |
Li GL, Xie C, Lu SY, Nichols RG, Tian Y, Li LC, Patel D, Ma YY, Brocker CN, Yan TT
CrossRef
Google scholar
|
[51] |
Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, Gao Y, van den Heuvel JK, Meijer OC, Berbee JFP
CrossRef
Google scholar
|
[52] |
Lim PS, Loke CF, Ho YW, Tan HY (2020) Cholesterol homeostasis associated with probiotic supplementation in vivo. J Appl Microbiol
CrossRef
Google scholar
|
[53] |
Lindheim L, Bashir M, Munzker J, Trummer C, Zachhuber V, Leber B, Horvath A, Pieber TR, Gorkiewicz G, Stadlbauer V
CrossRef
Google scholar
|
[54] |
Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X
CrossRef
Google scholar
|
[55] |
Liu R, Zhang C, Shi Y, Zhang F, Li L, Wang X, Ling Y, Fu H, Dong W, Shen J
CrossRef
Google scholar
|
[56] |
Longo VD, Panda S (2016) Fasting, circadian rhythms, and timerestricted feeding in healthy lifespan. Cell Metab 23:1048–1059
CrossRef
Google scholar
|
[57] |
Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672
CrossRef
Google scholar
|
[58] |
Manco M, Putignani L, Bottazzo GF (2010) Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 31:817–844
CrossRef
Google scholar
|
[59] |
Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ, Huang Y, Gerner MY, Belkaid Y, Germain RN (2018) Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554:255–259
CrossRef
Google scholar
|
[60] |
Matsubara T, Li F, Gonzalez FJ (2013) FXR signaling in the enterohepatic system. Mol Cell Endocrinol 368:17–29
CrossRef
Google scholar
|
[61] |
Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, Giacco R, Mennella I, Ferracane R, Pons N
CrossRef
Google scholar
|
[62] |
Miyamoto J, Igarashi M, Watanabe K, Karaki SI, Mukouyama H, Kishino S, Li X, Ichimura A, Irie J, Sugimoto Y
CrossRef
Google scholar
|
[63] |
Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B, American Diabetes A (2007) Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30:753–759
CrossRef
Google scholar
|
[64] |
Norman RJ, Dewailly D, Legro RS, Hickey TE (2007) Polycystic ovary syndrome. The Lancet 370:685–697
CrossRef
Google scholar
|
[65] |
Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J (2017) A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5:48
CrossRef
Google scholar
|
[66] |
Pi Y, Mu C, Gao K, Liu Z, Peng Y, Zhu W (2020) Increasing the hindgut carbohydrate/protein ratio by cecal infusion of corn starch or casein hydrolysate drives gut microbiota-related bile acid metabolism to stimulate colonic barrier function. mSystems 5: e00176–20
CrossRef
Google scholar
|
[67] |
Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70:3–21
CrossRef
Google scholar
|
[68] |
Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, Ghatei MA, Bloom SR, Frost G (2015) The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond) 39:424–429
CrossRef
Google scholar
|
[69] |
Qi X, Yun C, Sun L, Xia J, Wu Q,Wang Y, Wang L, Zhang Y, Liang X, Wang L
CrossRef
Google scholar
|
[70] |
Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z, Belda-Ferre P, Tripathi A, Chung LK
CrossRef
Google scholar
|
[71] |
Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochem Biophys Acta 1784:1873–1898
CrossRef
Google scholar
|
[72] |
Rao RK, Seth A, Sheth P (2004) Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 286:G881–G884
CrossRef
Google scholar
|
[73] |
Reilly SM, Saltiel AR (2017) Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 13:633–643
CrossRef
Google scholar
|
[74] |
Rubio LA, Aranda-Olmedo I, Martín-Pedrosa M (2020) Inclusion of limited amounts of extruded legumes plus cereal mixes in normocaloric or obesogenic diets for rats: effects on lipid profile. Foods (Basel, Switzerland)9
CrossRef
Google scholar
|
[75] |
Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, Mujagic Z, Masclee AAM, Jonkers D, Oosting M
CrossRef
Google scholar
|
[76] |
Santaguida PL, Balion C, Hunt D, Morrison K, Gerstein H, Raina P, Booker L, Yazdi H (2005) Diagnosis, prognosis, and treatment of impaired glucose tolerance and impaired fasting glucose. Evidence report/technology assessment (Summary), 1–11
|
[77] |
Schroeder BO, Backhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22:1079–1089
CrossRef
Google scholar
|
[78] |
Schwimmer JB, Johnson JS, Angeles JE, Behling C, Belt PH, Borecki I, Bross C, Durelle J, Goyal NP, Hamilton G
CrossRef
Google scholar
|
[79] |
Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340
CrossRef
Google scholar
|
[80] |
Shaw JE, Zimmet PZ, de Courten M, Dowse GK, Chitson P, Gareeboo H, Hemraj F, Fareed D, Tuomilehto J, Alberti KG (1999) Impaired fasting glucose or impaired glucose tolerance. What best predicts future diabetes in Mauritius? Diabetes Care 22:399–402
CrossRef
Google scholar
|
[81] |
Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, Geva-Zatorsky N, Jupp R, Mathis D, Benoist C
CrossRef
Google scholar
|
[82] |
Sun J, Buys NJ (2016) Glucose- and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr 115:1167–1177
CrossRef
Google scholar
|
[83] |
Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B
CrossRef
Google scholar
|
[84] |
Sun L, Pang Y, Wang X, Wu Q, Liu H, Liu B, Liu G, Ye M, Kong W, Jiang C (2019) Ablation of gut microbiota alleviates obesityinduced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters. Acta Pharm Sin B 9:702–710
CrossRef
Google scholar
|
[85] |
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM (2018) Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 27:1212–1221
CrossRef
Google scholar
|
[86] |
Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 108(Suppl 1):4523–4530
CrossRef
Google scholar
|
[87] |
Thingholm LB, Ruhlemann MC, Koch M, Fuqua B, Laucke G, Boehm R, Bang C, Franzosa EA, Hubenthal M, Rahnavard A
CrossRef
Google scholar
|
[88] |
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Shortchain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371
CrossRef
Google scholar
|
[89] |
Trabelsi MS, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin SI, Perino A, Brighton CA, Sebti Y, Kluza J
CrossRef
Google scholar
|
[90] |
Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M
CrossRef
Google scholar
|
[91] |
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031
CrossRef
Google scholar
|
[92] |
Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223
CrossRef
Google scholar
|
[93] |
Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y, Kotani J (2008) Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res 28:321–328
CrossRef
Google scholar
|
[94] |
Vendrame F, Gottlieb PA (2004) Prediabetes: prediction and prevention trials. Endocrinol Metab Clin N Am 33(75–92):ix
CrossRef
Google scholar
|
[95] |
Vernocchi P, Del Chierico F, Putignani L (2016) Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Front Microbiol 7:1144
CrossRef
Google scholar
|
[96] |
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN
CrossRef
Google scholar
|
[97] |
Wang C, Nagata S, Asahara T, Yuki N, Matsuda K, Tsuji H, Takahashi T, Nomoto K, Yamashiro Y (2015) Intestinal microbiota profiles of healthy pre-school and school-age children and effects of probiotic supplementation. Ann Nutr Metab 67:257–266
CrossRef
Google scholar
|
[98] |
Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L (2016) Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 6:32002
CrossRef
Google scholar
|
[99] |
Wang L, Ren B, Zhang Q, Chu C, Zhao Z, Wu J, Zhao W, Liu Z, Liu X (2020) Methionine restriction alleviates high-fat diet-induced obesity: involvement of diurnal metabolism of lipids and bile acids. Biochim Biophys Acta 1866:165908
CrossRef
Google scholar
|
[100] |
Whang A, Nagpal R, Yadav H (2019) Bi-directional drug-microbiome interactions of anti-diabetics. EbioMedicine 39:591–602
CrossRef
Google scholar
|
[101] |
Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583
CrossRef
Google scholar
|
[102] |
Worthmann A, John C, Ruhlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, Heine M, Schlein C, Evangelakos I, Mineo C
CrossRef
Google scholar
|
[103] |
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R
CrossRef
Google scholar
|
[104] |
Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Manneras-Holm L, Stahlaman M, Olsson LM, Serino M, Planas-Felix M
CrossRef
Google scholar
|
[105] |
Xie C, Jiang C, Shi J, Gao X, Sun D, Sun L, Wang T, Takahashi S, Anitha M, Krausz KW
CrossRef
Google scholar
|
[106] |
Yao CK, Muir JG, Gibson PR (2016) Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther 43:181–196
CrossRef
Google scholar
|
[107] |
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver diseasemeta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84
CrossRef
Google scholar
|
[108] |
Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M
CrossRef
Google scholar
|
[109] |
Zelante T, Iannitti Rossana G, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F
CrossRef
Google scholar
|
[110] |
Zhang Q, Li Y, Chen L (2015) Effect of berberine in treating type 2 diabetes mellitus and complications and its relevant mechanisms. China J Chin Mater Med 40:1660–1665
|
[111] |
Zhang L, Xie C, Nichols RG, Chan SH, Jiang C, Hao R, Smith PB, Cai J, Simons MN, Hatzakis E
CrossRef
Google scholar
|
[112] |
Zhang W, Xu JH, Yu T, Chen QK (2019a) Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother 118:109131
CrossRef
Google scholar
|
[113] |
Zhang X, Zhang Y, Wang P, Zhang SY, Dong Y, Zeng G, Yan Y, Sun L, Wu Q, Liu H
CrossRef
Google scholar
|
[114] |
Zhang Z, Zhou H, Zhou X, Sun J, Liang X, Lv Y, Bai L, Zhang J, Gong P, Liu T
CrossRef
Google scholar
|
[115] |
Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98
CrossRef
Google scholar
|
[116] |
Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57:601–609
CrossRef
Google scholar
|
/
〈 | 〉 |