Targeting the alternative bile acid synthetic pathway for metabolic diseases
Wei Jia, Meilin Wei, Cynthia Rajani, Xiaojiao Zheng
Targeting the alternative bile acid synthetic pathway for metabolic diseases
The gut microbiota is profoundly involved in glucose and lipid metabolism, in part by regulating bile acid (BA) metabolism and affecting multiple BA-receptor signaling pathways. BAs are synthesized in the liver by multi-step reactions catalyzed via two distinct routes, the classical pathway (producing the 12α-hydroxylated primary BA, cholic acid), and the alternative pathway (producing the non-12α-hydroxylated primary BA, chenodeoxycholic acid). BA synthesis and excretion is a major pathway of cholesterol and lipid catabolism, and thus, is implicated in a variety of metabolic diseases including obesity, insulin resistance, and nonalcoholic fatty liver disease. Additionally, both oxysterols and BAs function as signaling molecules that activate multiple nuclear and membrane receptor-mediated signaling pathways in various tissues, regulating glucose, lipid homeostasis, inflammation, and energy expenditure. Modulating BA synthesis and composition to regulate BA signaling is an interesting and novel direction for developing therapies for metabolic disease. In this review, we summarize the most recent findings on the role of BA synthetic pathways, with a focus on the role of the alternative pathway, which has been under-investigated, in treating hyperglycemia and fatty liver disease. We also discuss future perspectives to develop promising pharmacological strategies targeting the alternative BA synthetic pathway for the treatment of metabolic diseases.
bile acids / gut microbiota / alternative pathway / metabolic diseases
[1] |
Kaur A, Patankar JV, de Haan W, Ruddle P, Wijesekara N, Groen AK, Verchere CB, Singaraja RR, Hayden MR (2015) Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1. Diabetes 64:1168–1179
CrossRef
Google scholar
|
[2] |
Arora T, Bäckhed F (2016) The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 280:339–349
CrossRef
Google scholar
|
[3] |
Bai Q, Zhang X, Xu L, Kakiyama G, Heuman D, Sanyal A, Pandak WM, Yin L, Xie W, Ren S (2012) Oxysterol sulfation by cytosolic sulfotransferase suppresses liver X receptor/sterol regulatory element binding protein-1c signaling pathway and reduces serum and hepatic lipids in mouse models of nonalcoholic fatty liver disease. Metabolism 61:836–845
CrossRef
Google scholar
|
[4] |
Baranowski M, Zabielski P,Blachnio-Zabielska AU, Harasim E, Chabowski A, Gorski J(2014) Insulin-sensitizing effect of LXR agonist T0901317 in high-fat fed rats is associated with restored muscle GLUT4 expression and insulin-stimulated AS160 phosphorylation. Cell Physiol Biochem 33:1047–1057
CrossRef
Google scholar
|
[5] |
Bennett MJ, McKnight SL, Coleman JP (2003) Cloning and characterization of the NAD-dependent 7α-hydroxysteroid dehydrogenase from Bacteroides fragilis. Curr Microbiol 47:475–484
CrossRef
Google scholar
|
[6] |
Benoit B, Meugnier E, Castelli M, Chanon S, Vieille-Marchiset A, Durand C,Bendridi N,Pesenti S, Monternier PA, Durieux AC
CrossRef
Google scholar
|
[7] |
Bertaggia E, Jensen KK, Castro-Perez J, Xu Y,Di Paolo G, Chan RB, Wang L, Haeusler RA (2017) Ablation prevents Western dietinduced weight gain and hepatic steatosis because of impaired fat absorption. Am J Physiol Endocrinol Metab 313:E121–E133
CrossRef
Google scholar
|
[8] |
Biddinger SB, Haas JT, Yu BB, Bezy O, Jing E, Zhang W, Unterman TG, Carey MC, Kahn CR (2008) Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat Med 14:778–782
CrossRef
Google scholar
|
[9] |
Bovenga F, Sabba C, Moschetta A (2015) Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab 21:517–526
CrossRef
Google scholar
|
[10] |
Brown AJ, Jessup W (2009) Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Asp Med 30:111–122
CrossRef
Google scholar
|
[11] |
Brufau G,Stellaard F, Prado K, Bloks VW, Jonkers E, Boverhof R, Kuipers F, Murphy EJ (2010) Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology (Baltim Md) 52:1455–1464
CrossRef
Google scholar
|
[12] |
Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C (2009) Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol 50:789–796
CrossRef
Google scholar
|
[13] |
Chang CC, Sakashita N, Ornvold K, Lee O, Chang ET, Dong R, Lin S, Lee CY, Strom SC, Kashyap R
|
[14] |
Chang TY, Li BL, Chang CC, Urano Y (2009) Acyl-coenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab 297:E1–E9
CrossRef
Google scholar
|
[15] |
Chen C, Hu B, Wu T, Zhang Y, Xu Y, Feng Y, Jiang H (2016) Bile acid profiles in diabetic (db/db) mice and their wild type littermates. J Pharm Biomed Anal 131:473–481
CrossRef
Google scholar
|
[16] |
Clare K, Hardwick SJ, Carpenter KL, Weeratunge N, Mitchinson MJ (1995) Toxicity of oxysterols to human monocyte-macrophages. Atherosclerosis 118:67–75
CrossRef
Google scholar
|
[17] |
de Aguiar Vallim TQ, Tarling EJ, Edwards PA (2013) Pleiotropic roles of bile acids in metabolism. Cell Metab 17:657–669
CrossRef
Google scholar
|
[18] |
Degirolamo C, Sabba C, Moschetta A (2016) Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 15:51–69
CrossRef
Google scholar
|
[19] |
Dong Z, Lee BH (2018) Bile salt hydrolases: structure and function, substrate preference, and inhibitor development. Protein Sci 27:1742–1754
CrossRef
Google scholar
|
[20] |
Edenharder R, Pfützner M, Hammann R (1989) NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from a lecithinase-lipase-negative Clostridium species 25.11. c. Biochim Biophys Acta 1002:37–44
CrossRef
Google scholar
|
[21] |
Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, Tailleux A, Schaart G, Kouach M, Charton J, Deprez B
CrossRef
Google scholar
|
[22] |
Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y
CrossRef
Google scholar
|
[23] |
Schaap FG, Trauner M, Jansen PLM (2014) Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 11:55–67
CrossRef
Google scholar
|
[24] |
Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B
CrossRef
Google scholar
|
[25] |
Geenes V, Lovgren-Sandblom A, Benthin L, Lawrance D, Chambers J, Gurung V, Thornton J, Chappell L, Khan E, Dixon P
CrossRef
Google scholar
|
[26] |
Goessling W, North TE (2016) EnaBILEing growth in the fetal liver. Cell Stem Cell 18:427–428
CrossRef
Google scholar
|
[27] |
Guillemot-Legris O, Mutemberezi V, Muccioli GG (2016) Oxysterols in metabolic syndrome: from bystander molecules to bioactive lipids. Trends Mol Med 22:594–614
CrossRef
Google scholar
|
[28] |
Han J,Qin WX, Li ZL, Xu AJ, Xing H, Wu H, Zhang H, Wang MD, Li C, Liang L
CrossRef
Google scholar
|
[29] |
Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N, Kohjima M, Kotoh K, Nakamuta M, Takayanagi R
CrossRef
Google scholar
|
[30] |
Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, Zhang Y, Lei S, Wang S, Kuang J
CrossRef
Google scholar
|
[31] |
Ikegami T, Hyogo H, Honda A, Miyazaki T, Tokushige K, Hashimoto E, Inui K, Matsuzaki Y, Tazuma S (2012) Increased serum liver X receptor ligand oxysterols in patients with non-alcoholic fatty liver disease. J Gastroenterol 47:1257–1266
CrossRef
Google scholar
|
[32] |
Itoh S, Onishi S (2000) Hepatic taurine, glycine and individual bile acids in early human fetus. Early Hum Dev 57:71–77
CrossRef
Google scholar
|
[33] |
Jia W, Xie G, Jia W (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15:111–128
CrossRef
Google scholar
|
[34] |
Nicholson JK, Holmes E, Kinross J,Burcelin R, Gibson G,Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267
CrossRef
Google scholar
|
[35] |
Kakiyama G, Marques D, Takei H, Nittono H, Erickson S, Fuchs M, Rodriguez-Agudo D, Gil G,Hylemon PB, Zhou H
CrossRef
Google scholar
|
[36] |
Kim I, Ahn S-H, Inagaki T, Choi M, Ito S,Guo GL, Kliewer SA, Gonzalez FJ (2007) Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48:2664–2672
CrossRef
Google scholar
|
[37] |
Laffitte BA, Chao LC, Li J, Walczak R,Hummasti S, Joseph SB, Castrillo A, Wilpitz DC, Mangelsdorf DJ, Collins JL
CrossRef
Google scholar
|
[38] |
Lake AD, Novak P, Shipkova P, Aranibar N, Robertson D, Reily MD, Lu Z, Lehman-McKeeman LD, Cherrington NJ (2013) Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol Appl Pharmacol 268:132–140
CrossRef
Google scholar
|
[39] |
Laurin J, Lindor KD, Crippin JS, Gossard A, Gores GJ, Ludwig J, Rakela J, McGill DB (1996) Ursodeoxycholic acid or clofibrate in the treatment of non-alcohol-induced steatohepatitis: a pilot study. Hepatology 23:1464–1467
CrossRef
Google scholar
|
[40] |
Li C, Yang W, Zhang J, Zheng X, Yao Y, Tu K, Liu Q(2014) SREBP- 1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci 15:7124–7138
CrossRef
Google scholar
|
[41] |
Li J, Zheng X, Lou N, Zhong W, Yan D (2016) Oxysterol binding protein-related protein 8 mediates the cytotoxicity of 25-hydroxycholesterol. J Lipid Res 57:1845–1853
CrossRef
Google scholar
|
[42] |
Li P, Ruan X, Yang L, Kiesewetter K, Zhao Y,Luo H, Chen Y, Gucek M, Zhu J, Cao H (2015) A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab 21:455–467
CrossRef
Google scholar
|
[43] |
Lindor KD, Kowdley KV, Heathcote EJ, Harrison ME, Jorgensen R, Angulo P, Lymp JF, Burgart L,Colin P (2004) Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology (Baltim Md) 39:770–778
CrossRef
Google scholar
|
[44] |
Liu N, Feng J, Lv Y, Liu Q, Deng J, Xia Y, Guo C, Zhou Y (2019) Role of bile acids in the diagnosis and progression of liver cirrhosis: a prospective observational study. Exp Ther Med 18:4058–4066
CrossRef
Google scholar
|
[45] |
Lofthouse EM, Torrens C, Manousopoulou A, Nahar M,Cleal JK, O’Kelly IM, Sengers BG, Garbis SD, Lewis RM (2019) Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta. FASEB J 33:8211–8220
CrossRef
Google scholar
|
[46] |
Long H, Guo X, Qiao S, Huang Q (2018) Tumor LXR expression is a prognostic marker for patients with hepatocellular carcinoma. Pathol Oncol Res 24:339–344
CrossRef
Google scholar
|
[47] |
Lu M, Hu XH, Li Q, Xiong Y, Hu GJ, Xu JJ, Zhao XN, Wei XX, Chang CC, Liu YK
CrossRef
Google scholar
|
[48] |
Ma H, Sales VM, Wolf AR, Subramanian S, Matthews TJ, Chen M, Sharma A, Gall W, Kulik W, Cohen DE
CrossRef
Google scholar
|
[49] |
Macdonald IA, Hutchison DM, Forrest TP, Bokkenheuser VD, Winter J, Holdeman LV (1983) Metabolism of primary bile acids by Clostridium perfringens. J Steroid Chem 18:97–104
CrossRef
Google scholar
|
[50] |
Matsuoka K, Suzuki M, Honda C, Endo K, Moroi Y (2006) Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species. Chem Phys Lipids 139:1–10
CrossRef
Google scholar
|
[51] |
Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, Kellum J, Warnick R, Contos MJ, Sanyal AJ (2012) Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 15:665–674
CrossRef
Google scholar
|
[52] |
Miura S, Mitsuhashi N, Shimizu H, Kimura F, Yoshidome H, Otsuka M, Kato A, Shida T, Okamura D, Miyazaki M (2012) Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer 12:56
CrossRef
Google scholar
|
[53] |
Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J(2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15:804
CrossRef
Google scholar
|
[54] |
Mueller M, Thorell A, Claudel T, Jha P, Koefeler H, Lackner C, Hoesel B,Fauler G, Stojakovic T, Einarsson C (2015) Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 62:1398–1404
CrossRef
Google scholar
|
[55] |
Mulder TPJ, van Platerink CJ, Schuyl PJW, van Amelsvoort JMM (2001) Analysis of theaflavins in biological fluids using liquid chromatography–electrospray mass spectrometry. J Chromatogr B 760:271–279
CrossRef
Google scholar
|
[56] |
Mutemberezi V, Guillemot-Legris O, Muccioli GG (2016) Oxysterols: from cholesterol metabolites to key mediators. Prog Lipid Res 64:152–169
CrossRef
Google scholar
|
[57] |
Na TY, Shin YK, Roh KJ, Kang SA, Hong I, Oh SJ, Seong JK, Park CK, Choi YL, Lee MO (2009) Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virusassociated hepatocellular carcinoma. Hepatology 49:1122–1131
CrossRef
Google scholar
|
[58] |
Nakagawa M, Setchell KD (1990) Bile acid metabolism in early life: studies of amniotic fluid. J Lipid Res 31:1089–1098
|
[59] |
Nojima K, Sugimoto K, Ueda H, Babaya N, Ikegami H, Rakugi H (2013) Analysis of hepatic gene expression profile in a spontaneous mouse model of type 2 diabetes under a high sucrose diet. Endocr J 60:261–274
CrossRef
Google scholar
|
[60] |
Chávez-Talavéra O, Tailleux A, Lefebvre P, Staels B (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152:1679–1694.e1673
CrossRef
Google scholar
|
[61] |
Oram JF, Heinecke JW (2005) ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 85:1343–1372
CrossRef
Google scholar
|
[62] |
Pai R, Dunlap D, Qing J, Mohtashemi I, Hotzel K, French DM (2008) Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling. Cancer Res 68:5086–5095
CrossRef
Google scholar
|
[63] |
Pandak WM, Kakiyama G (2019) The acidic pathway of bile acid synthesis: not just an alternative pathway. Liver Res 3:88–98
CrossRef
Google scholar
|
[64] |
Pannu PS, Allahverdian S, Francis GA (2013) Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocrinol 368:99–107
CrossRef
Google scholar
|
[65] |
Pathak P, Chiang JY (2019) Sterol 12α-hydroxylase aggravates dyslipidemia by activating the ceramide/mTORC1/SREBP-1C pathway via FGF21 and FGF15. Gene Expr J Liver Res 19:161–173
CrossRef
Google scholar
|
[66] |
Piglionica M, Cariello M, Moschetta A (2018) The gut-liver axis in hepatocarcinoma: a focus on the nuclear receptor FXR and the enterokine FGF19. Curr Opin Pharmacol 43:93–98
CrossRef
Google scholar
|
[67] |
Haeusler RA, Astiarraga B, Camastra SAccili D, Ferrannini E (2013) Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62:4184–4191
CrossRef
Google scholar
|
[68] |
Raccosta L, Fontana R, Corna G, Maggioni D, Moresco M, Russo V (2016) Cholesterol metabolites and tumor microenvironment: the road towards clinical translation. Cancer Immunol Immunother 65:111–117
CrossRef
Google scholar
|
[69] |
Raccosta L, Fontana R, Maggioni DLanterna C, Villablanca EJ, Paniccia A,Musumeci A,Chiricozzi E, Trincavelli ML,Daniele S
CrossRef
Google scholar
|
[70] |
Rao A, Kosters A, Mells JE, Zhang W, Setchell KD, Amanso AM, Wynn GM, Xu T, Keller BT, Yin H (2016) Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med 8:357ra122
CrossRef
Google scholar
|
[71] |
Ren S, Li X, Rodriguez-Agudo D, Gil G, Hylemon P, Pandak WM (2007) Sulfated oxysterol, 25HC3S, is a potent regulator of lipid metabolism in human hepatocytes. Biochem Biophys Res Commun 360:802–808
CrossRef
Google scholar
|
[72] |
Ridlon JM, Kang D-J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259
CrossRef
Google scholar
|
[73] |
Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sanchez Pozzi EJ (2011) Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci (Lond) 121:523–544
CrossRef
Google scholar
|
[74] |
Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, Angelin B, Hyotylainen T, Oresic M, Backhed F(2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235
CrossRef
Google scholar
|
[75] |
Seo KH, Bartley GE, Tam C,Kim HS, Kim DH, Chon JW, Kim H, Yokoyama W (2016) Chardonnay grape seed flour ameliorates hepatic steatosis and insulin resistance via altered hepatic gene expression for oxidative stress, inflammation, and lipid and ceramide synthesis in diet-induced obese mice. PLoS ONE 11: e0167680
CrossRef
Google scholar
|
[76] |
Setchell KD, Dumaswala R, Colombo C, Ronchi M (1988) Hepatic bile acid metabolism during early development revealed from the analysis of human fetal gallbladder bile. J Biol Chem 263:16637–16644
|
[77] |
Sigurdsson V, Takei H, Soboleva S, Radulovic V, Galeev R, Siva K, Leeb-Lundberg LM, Iida T, Nittono H, Miharada K (2016) Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell 18:522–532
CrossRef
Google scholar
|
[78] |
Smith K, Zeng X, Lin J (2014) Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system. PLoS ONE 9:e85344
CrossRef
Google scholar
|
[79] |
Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140:976–986
CrossRef
Google scholar
|
[80] |
Su GL (2002) Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 283:G256–G265
CrossRef
Google scholar
|
[81] |
Su K, Sabeva NS, Liu J, Wang Y, Bhatnagar S, van der Westhuyzen DR, Graf GA (2012) The ABCG5 ABCG8 sterol transporter opposes the development of fatty liver disease and loss of glycemic control independently of phytosterol accumulation. J Biol Chem 287:28564–28575
CrossRef
Google scholar
|
[82] |
Takeyama Y, Uehara Y, Anan A, Morihara D, Yokoyama K, Takata K, Tanaka T, Irie M, Iwata K, Shakado S
CrossRef
Google scholar
|
[83] |
Tang R, Wei Y, Li Y, Chen W, Chen H,Wang Q, Yang F, Miao Q, Xiao X, Zhang H (2018) Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut 67:534–541
CrossRef
Google scholar
|
[84] |
Trabelsi MS, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin SI, Perino A, Brighton CA, Sebti Y, Kluza J
CrossRef
Google scholar
|
[85] |
Massafra V, Pellicciari R, Gioiello A, van Mil SWC (2018) Progress and challenges of selective Farnesoid X Receptor modulation. Pharmacol Ther 191:162–177
CrossRef
Google scholar
|
[86] |
Vaz FM, Ferdinandusse S (2017) Bile acid analysis in human disorders of bile acid biosynthesis. Mol Asp Med 56:10–24
CrossRef
Google scholar
|
[87] |
Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D,Negro A, Sanvito F, Ponzoni M, Valentinis B, Bregni M
CrossRef
Google scholar
|
[88] |
Wahlström A, Sayin SI, Marschall H-U, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50
CrossRef
Google scholar
|
[89] |
Wang DQ, Tazuma S, Cohen DE, Carey MC (2003) Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am J Physiol Gastrointest Liver Physiol 285:G494–G502
CrossRef
Google scholar
|
[90] |
Wei M, Huang F, Zhao L, Zhang Y, Yang W, Wang S, Li M, Han X, Ge K, Qu C
CrossRef
Google scholar
|
[91] |
Wikstrom Shemer E, Marschall HU, Ludvigsson JF, Stephansson O (2013) Intrahepatic cholestasis of pregnancy and associated adverse pregnancy and fetal outcomes: a 12-year populationbased cohort study. BJOG 120:717–723
CrossRef
Google scholar
|
[92] |
Worthmann A, John C, Rühlemann MC, Baguhl M, Heinsen F-A, Schaltenberg N, Heine M, Schlein C, Evangelakos I, Mineo C
CrossRef
Google scholar
|
[93] |
Xu L, Kim JK, Bai Q, Zhang X, Kakiyama G, Min HK, Sanyal AJ, Pandak WM, Ren S (2013) 5-Cholesten-3beta, 25-diol 3-sulfate decreases lipid accumulation in diet-induced nonalcoholic fatty liver disease mouse model. Mol Pharmacol 83:648–658
CrossRef
Google scholar
|
[94] |
Xu L, Shen S, Ma Y, Kim JK, Rodriguez-Agudo D, Heuman DM, Hylemon PB, Pandak WM, Ren S (2012) 25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARgamma signaling in human THP-1 macrophages. Am J Physiol Endocrinol Metab 302:E788–799
CrossRef
Google scholar
|
[95] |
Yang Y, Jiang Y, Wang Y, An W (2010) Suppression of ABCA1 by unsaturated fatty acids leads to lipid accumulation in HepG2 cells. Biochimie 92:958–963
CrossRef
Google scholar
|
[96] |
Yokota A, Fukiya S, Islam KS, Ooka T, Ogura Y, Hayashi T, Hagio M, Ishizuka S (2012) Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes 3:455–459
CrossRef
Google scholar
|
[97] |
Yu H, Ni Y, Bao Y, Zhang P, Zhao A, Chen T, Xie G, Tu Y, Zhang L, Su M
CrossRef
Google scholar
|
[98] |
Zhang Y, Jiang R, Zheng X, Lei S, Huang F, Xie G, Kwee S, Yu H, Farrar C, Sun B
CrossRef
Google scholar
|
[99] |
Zhang Y, Pan Y, Lin C, Zheng Y, Sun H, Zhang H, Wang J, Yuan M, Duan T, Du Q
CrossRef
Google scholar
|
[100] |
Zhong W, Qin S, Zhu B, Pu M, Liu F, Wang L, Ye G, Yi Q, Yan D (2015) Oxysterol-binding protein-related protein 8 (ORP8) increases sensitivity of hepatocellular carcinoma cells to Fasmediated apoptosis. J Biol Chem 290:8876–8887
CrossRef
Google scholar
|
/
〈 | 〉 |