The potential of using blood circular RNA as liquid biopsy biomarker for human diseases

Guoxia Wen, Tong Zhou, Wanjun Gu

PDF(2348 KB)
PDF(2348 KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (12) : 911-946. DOI: 10.1007/s13238-020-00799-3
REVIEW
REVIEW

The potential of using blood circular RNA as liquid biopsy biomarker for human diseases

Author information +
History +

Abstract

Circular RNA (circRNA) is a novel class of singlestranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and significant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.

Keywords

peripheral blood circular RNA / liquid psy / human diseases / translational biomarkers

Cite this article

Download citation ▾
Guoxia Wen, Tong Zhou, Wanjun Gu. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell, 2021, 12(12): 911‒946 https://doi.org/10.1007/s13238-020-00799-3

References

[1]
Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh J, Kim K, Martindale JL (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14:361–369
CrossRef Google scholar
[2]
Agirre X, Meydan C, Jiang Y, Garate L, Doane AS, Li Z, Verma A, Paiva B, Martín-Subero JI, Elemento O (2019) Long noncoding RNAs discriminate the stages and gene regulatory states of human humoral immune response. Nat Commun 10:821
CrossRef Google scholar
[3]
Ahadi S, Zhou W, Rose S, Sailani RM, Contrepois K, Avina M, Ashland M, Brunet A, Snyder M (2020) Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat Med 26:83–90
CrossRef Google scholar
[4]
Aktaş T, Ilık İ, Maticzka D, Bhardwaj V, Rodrigues C, Mittler G, Manke T, Backofen R, Akhtar A (2017) DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544:115–119
CrossRef Google scholar
[5]
Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, Ghevaert C, Mountford JC, Marenah L, Elliott DJ (2016) Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood 127:e1–e11
CrossRef Google scholar
[6]
Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, Crampin AC, Dockrell HM, French N, Hamilton MS (2014) Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med 370:1712–1723
CrossRef Google scholar
[7]
Anfossi S, Babayan A, Pantel K, Calin GA (2018) Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol 15:541–563
CrossRef Google scholar
[8]
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008
CrossRef Google scholar
[9]
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66
CrossRef Google scholar
[10]
Aufiero S, Reckman YJ, Pinto YM, Creemers EE (2019) Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol 16:503–514
CrossRef Google scholar
[11]
Awan FM, Yang BB, Naz A, Hanif A, Ikram A, Obaid A, Malik A, Janjua HA, Ali A, Sharif S (2020) The emerging role and significance of circular RNAs in viral infections and antiviral immune responses: possible implication as theranostic agents. RNA Biol. https://doi.org/10.1080/15476286.2020.1790198
CrossRef Google scholar
[12]
Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DTW, Xiao X (2014) The landscape of microRNA, piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61:221–230
CrossRef Google scholar
[13]
Bao X, He X, Zheng S, Sun J, Luo Y, Tan R, Zhao J, Zhong F, Zhang L (2019) Up-regulation of circular RNA hsa_circ_0037909 promotes essential hypertension. J Clin Lab Anal 33:e22853
CrossRef Google scholar
[14]
Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J, Zhang L (2018) A potential risk factor of essential hypertension in case–control study: circular RNA hsa_circ_0037911. Biochem Biophys Res Commun 498:789–794
CrossRef Google scholar
[15]
Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 4: e07540
CrossRef Google scholar
[16]
Beltrán-García J, Osca-Verdegal R, Nacher-Sendra E, Pallardó FV, García-Giménez JL (2020) Circular RNAs in sepsis: biogenesis, function, and clinical significance. Cells 9:1544
CrossRef Google scholar
[17]
Best MG, Vancura A, Wurdinger T (2017) Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost 15:1295–1306
CrossRef Google scholar
[18]
Best MG, Wesseling P, Wurdinger T (2018) Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res 78:3407–3412
CrossRef Google scholar
[19]
Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, Kawli T, Christians FC, Venkatasubrahmanyam S, Wall GD (2019) Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol 4:663–674
CrossRef Google scholar
[20]
Bloom CI, Graham CM, Berry MP, Rozakeas F, Redford PS, Wang Y, Xu Z, Wilkinson KA, Wilkinson RJ, Kendrick Y (2013) Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. PLoS ONE 8:e70630
CrossRef Google scholar
[21]
Bloom RD, Bromberg JS, Poggio ED, Bunnapradist S, Langone AJ, Sood P, Matas AJ, Mehta S, Mannon RB, Sharfuddin A (2017) Cell-free DNA and active rejection in kidney allografts. J Am Soc Nephrol 28:2221–2232
CrossRef Google scholar
[22]
Bullinger L, Döhner K, Bair E, Fröhling S, Schlenk RF, Tibshirani R, Döhner H, Pollack JR (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616
CrossRef Google scholar
[23]
Burnham P, Dadhania D, Heyang M, Chen F, Westblade LF, Suthanthiran M, Lee J, Vlaminck I (2018) Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nat Commun 9:2412
CrossRef Google scholar
[24]
Byron SA, Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW (2016) Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 17:257–271
CrossRef Google scholar
[25]
Cadena C, Hur S (2017) Antiviral immunity and circular RNA: no end in sight. Mol Cell 67:163–164
CrossRef Google scholar
[26]
Cai Z, Fan Y, Zhang Z, Lu C, Zhu Z, Jiang T, Shan T, Peng Y (2020) VirusCircBase: a database of virus circular RNAs. Brief Bioin form. https://doi.org/10.1093/bib/bbaa052
CrossRef Google scholar
[27]
Cescon DW, Bratman SV, Chan SM, Siu LL (2020) Circulating tumor DNA and liquid biopsy in oncology. Nat Cancer 1:276–290
CrossRef Google scholar
[28]
Chaussabel D (2015) Assessment of immune status using blood transcriptomics and potential implications for global health. Semin Immunol 27:58–66
CrossRef Google scholar
[29]
Chaussabel D, Baldwin N (2014) Democratizing systems immunology with modular transcriptional repertoire analyses. Nat Rev Immunol 14:271–280
CrossRef Google scholar
[30]
Chen A, Zhong L, Ju K, Lu T, Lv J, Cao H (2020) Plasmatic circRNA predicting the occurrence of human glioblastoma. Cancer Manag Res 12:2917–2923
CrossRef Google scholar
[31]
Chen GY, Chen R, Ahmad S, Verma R, Kasturi S, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B (2019) N6-methyladenosine modification controls circular RNA immunity. Mol Cell 76:96–109.e109
CrossRef Google scholar
[32]
Chen GY, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, Iwasaki A, Chang HY (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67:228–238
CrossRef Google scholar
[33]
Chen GY, Satpathy AT, Chang HY (2017) Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 18:962–972
CrossRef Google scholar
[34]
Chen J, Zang Z, Braun U, Schwarz K, Harneit A, Kremer T, Ma R, Schweiger J, Moessnang C, Geiger L (2020) Association of a reproducible epigenetic risk profile for schizophrenia with brain methylation and function. JAMA Psychiatry 77(6):628–636
CrossRef Google scholar
[35]
Chen L-L (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211
CrossRef Google scholar
[36]
Chen L-L (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:1–16
CrossRef Google scholar
[37]
Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam H, Chen R, Miriami E, Karczewski KJ, Hariharan M, Dewey FE (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307
CrossRef Google scholar
[38]
Chen R, Xia L, Tu K, Duan M, Kukurba K, Li-Pook-Than J, Xie D, Snyder M (2018) Longitudinal personal DNA methylome dynamics in a human with a chronic condition. Nat Med 24:1930–1939
CrossRef Google scholar
[39]
Chen S, Huang V, Xu X, Livingstone J, Soares F, Jeon J, Zeng Y, Hua J, Petricca J, Guo H (2019) Widespread and functional RNA circularization in localized prostate cancer. Cell 176:831843.e822
CrossRef Google scholar
[40]
Chen S, Li T, Zhao Q, Xiao B, Guo J (2017) Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta 466:167–171
CrossRef Google scholar
[41]
Chen W, Quan Y, Fan S, Wang H, Liang J, Huang L, Chen L, Liu Q, He P, Ye Y (2020) Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett 475:119–128
CrossRef Google scholar
[42]
Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ (2018) PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial–mesenchymal transition. Clin Cancer Res 24:6319–6330
CrossRef Google scholar
[43]
Chen X, Yang T, Wang W, Xi W, Zhang T, Li Q, Yang A, Wang T (2019) Circular RNAs in immune responses and immune diseases. Theranostics 9:588–607
CrossRef Google scholar
[44]
Chen Y, Li C, Tan C, Liu X (2016) Circular RNAs: a new frontier in the study of human diseases. J Med Genet 53:359–365
CrossRef Google scholar
[45]
Chen Y-J, Chen C-Y, Mai T-L, Chuang C-F, Chen Y-C, Gupta SK, Yen L, Wang Y-D, Chuang T-J (2020) Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA–microRNA–mRNA regulatory axes in autism. Genome Res 30:375–391
CrossRef Google scholar
[46]
Chi BJ, Zhao DM, Liu L, Yin XZ, Wang FF, Bi S, Gui SL, Zhou SB, Qin WB, Wu DM (2019) Downregulation of hsa_circ_0000285 serves as a prognostic biomarker for bladder cancer and is involved in cisplatin resistance. Neoplasma 66:197–202
CrossRef Google scholar
[47]
Ciarloni L, Ehrensberger S, Imaizumi N, Monnier-Benoit S, Nichita C, Myung S-J, Kim J, Song S, Kim T, van der Weg B (2016) Development and clinical validation of a blood test based on 29-gene expression for early detection of colorectal cancer. Clin Cancer Res 22:4604–4611
CrossRef Google scholar
[48]
Ciarloni, L., Hosseinian, S., Monnier-Benoit, S., Imaizumi, N., Dorta, G., Ruegg, C., and Group, O.b.o.t (2015) Discovery of a 29-gene panel in peripheral blood mononuclear cells for the detection of colorectal cancer and adenomas using high throughput real-time PCR. PLoS ONE 10:e0123904
CrossRef Google scholar
[49]
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134
CrossRef Google scholar
[50]
Correia CN, Nalpas NC, McLoughlin KE, Browne JA, Gordon SV, MacHugh DE, Shaughnessy RG (2017) Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol 8:118
CrossRef Google scholar
[51]
Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW (2016) Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics 13:1
CrossRef Google scholar
[52]
Cui C, Yang J, Li X, Liu D, Fu L, Wang X (2020) Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer 19:58
CrossRef Google scholar
[53]
de Fraipont F, Gazzeri S, Cho WC, Eymin B (2019) Circular RNAs and RNA splice variants as biomarkers for prognosis and therapeutic response in the liquid biopsies of lung cancer patients. Front Genet 10:390
CrossRef Google scholar
[54]
Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z, Zhang G, Gu J, Kang D (2020) Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma. Cancer Lett 479:1–12
CrossRef Google scholar
[55]
Dolinar A, Koritnik B, Glavac D, Ravnik-Glavac M (2019) Circular RNAs as potential blood biomarkers in amyotrophic lateral sclerosis. Mol Neurobiol 56:8052–8062
CrossRef Google scholar
[56]
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB (2016) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24:357–370
CrossRef Google scholar
[57]
Du WW, Yang W, Chen Y, Wu Z-K, Foster FS, Yang Z, Li X, Yang BB (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38:1402–1412
CrossRef Google scholar
[58]
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858
CrossRef Google scholar
[59]
Dube U, Del-Aguila JL, Li Z, Budde JP, Jiang S, Hsu S, Ibanez L, Fernandez M, Farias F, Norton J (2019) An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci 22:1–10
CrossRef Google scholar
[60]
Dvinge H, Ries RE, Ilagan JO, Stirewalt DL, Meshinchi S, Bradley RK (2014) Sample processing obscures cancer-specific alterations in leukemic transcriptomes. Proc Natl Acad Sci USA 111:16802–16807
CrossRef Google scholar
[61]
Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y (2015) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 44:1370–1383
CrossRef Google scholar
[62]
Errichelli L, Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, Rosa A, Santis R, Scarfò R, Peruzzi G (2017) FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 8:14741
CrossRef Google scholar
[63]
Esmail H, Cobelens F, Goletti D (2020) Transcriptional biomarkers for predicting development of tuberculosis: progress and clinical considerations. Eur Respir J 55:1901957
CrossRef Google scholar
[64]
Fan L, Cao Q, Liu J, Zhang J, Li B (2019) Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis. Mol Cancer 18:16
CrossRef Google scholar
[65]
Fang Y, Wang X, Li W, Han J, Jin J, Su F, Zhang J, Huang W, Xiao F, Pan Q (2018) Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med 42:1865–1874
CrossRef Google scholar
[66]
Fehlmann T, Kahraman M, Ludwig N, Backes C, Galata V, Keller V, Geffers L, Mercaldo N, Hornung D, Weis T (2020) Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients. JAMA Oncol 6(5):714–723
CrossRef Google scholar
[67]
Fei T, Chen Y, Xiao T, Li W, Cato L, Zhang P, Cotter MB, Bowden M, Lis RT, Zhao SG (2017) Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc Natl Acad Sci USA 114:E5207–E5215
CrossRef Google scholar
[68]
Fischer JW, Busa VF, Shao Y, Leung AKL (2020) Structure-mediated RNA decay by UPF1 and G3BP1. Mol Cell 78:70–84.e76
CrossRef Google scholar
[69]
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P (2016) Sources and functions of extracellular small RNAs in human circulation. Annu Rev Nutr 36:301–336
CrossRef Google scholar
[70]
Fu Y, Wang J, Qiao J, Yi Z (2019) Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med 23:1917–1925
CrossRef Google scholar
[71]
Gaffo E, Boldrin E, Molin A, Bresolin S, Bonizzato A, Trentin L, Frasson C, Debatin K-M, Meyer LH, te Kronnie (2019) Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci Rep 9:14670
CrossRef Google scholar
[72]
Gao Y, Zhao F (2018) Computational strategies for exploring circular RNAs. Trends Genet. https://doi.org/10.1016/j.tig.2017.12.016
CrossRef Google scholar
[73]
Geng H-H, Li R, Su Y-M, Xiao J, Pan M, Cai X-X, Ji X-P (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS ONE 11:e0151753
CrossRef Google scholar
[74]
Ghods F (2018) Circular RNA in saliva. Adv Exp Med Biol 1087:131–139
CrossRef Google scholar
[75]
Giraldo NA, Becht E, Vano Y, Petitprez F, Lacroix L, Validire P, Sanchez-Salas R, Ingels A, Oudard S, Moatti A (2017) Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin Cancer Res 23:4416–4428
CrossRef Google scholar
[76]
Glažar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20:1666–1670
CrossRef Google scholar
[77]
Gong Y, Mao J, Wu D, Wang X, Li L, Zhu L, Song R (2018) CircZEB1.33 promotes the proliferation of human HCC by sponging miR-200a-3p and upregulating CDK6. Cancer Cell Int 18:116
CrossRef Google scholar
[78]
Gu C, Zhou N, Wang Z, Li G, Kou Y, Yu S, Feng Y, Chen L, Yang J, Tian F (2018) circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Mol Ther Nucleic Acids 13:633–641
CrossRef Google scholar
[79]
Gu Y, Ke G, Wang L, Zhou E, Zhu K, Wei Y (2017) Altered expression profile of circular RNAs in the serum of patients with diabetic retinopathy revealed by microarray. Ophthalmic Res 58:176–184
CrossRef Google scholar
[80]
Guarnerio J, Bezzi M, Jeong J, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH, Pandolfi P (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165:289–302
CrossRef Google scholar
[81]
Gunsolus IL, Sweeney TE, Liesenfeld O, Ledeboer NA (2019) Diagnosing and managing sepsis by probing the host response to infection: advances, opportunities, and challenges. J Clin Microbiol 57:e00425–e1419
CrossRef Google scholar
[82]
Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409
CrossRef Google scholar
[83]
Guo G, Wang H, Ye L, Shi X, Yan K, Lin K, Huang Q, Li B, Lin Q, Zhu L (2019) Hsa_circ_0000479 as a novel diagnostic biomarker of systemic lupus erythematosus. Front Immunol 10:2281
CrossRef Google scholar
[84]
Gupta RK, Turner CT, Venturini C, Esmail H, Rangaka MX, Copas A, Lipman M, Abubakar I, Noursadeghi M, Gupta RK (2020) Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med 8:395–406
CrossRef Google scholar
[85]
Han D, Li R, Shi J, Tan P, Zhang R, Li J (2020a) Liquid biopsy for infectious diseases: a focus on microbial cell-free DNA sequencing. Theranostics 10:5501–5513
CrossRef Google scholar
[86]
Han J, Zhang L, Hu L, Yu H, Xu F, Yang B, Zhang R, Zhang Y, An Y (2020b) Circular RNA-expression profiling reveals a potential role of hsa_circ_0097435 in heart failure via sponging multiple microRNAs. Front Genet 11:212
CrossRef Google scholar
[87]
Han L, Zhang X, Wang A, Ji Y, Cao X, Qin Q, Yu T, Yin L, Huang H (2020c) A dual-circular RNA signature as a non-invasive diagnostic biomarker for gastric cancer. Front Oncol 10:184
CrossRef Google scholar
[88]
Hanan M, Simchovitz A, Yayon N, Vaknine S, Cohen-Fultheim R, Karmon M, Madrer N, Rohrlich TM, Maman M, Bennett ER (2020) A Parkinson’s disease circRNAs resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol Med 12(9): e11942
CrossRef Google scholar
[89]
Hang D, Zhou J, Qin N, Zhou W, Ma H, Jin G, Hu Z, Dai J, Shen H (2018) A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med 7:2783–2791
CrossRef Google scholar
[90]
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388
CrossRef Google scholar
[91]
Hardwick SA, Deveson IW, Mercer TR (2017) Reference standards for next-generation sequencing. Nat Rev Genet 18(8):473–484
CrossRef Google scholar
[92]
He F, Zhong X, Lin Z, Lin J, Qiu M, Li X, Hu Z (2020) Plasma exohsa_circRNA_0056616: A potential biomarker for lymph node metastasis in lung adenocarcinoma. J Cancer 11:4037–4046
CrossRef Google scholar
[93]
Heitzer E, Haque IS, Roberts CES, Speicher MR (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet 20:71–88
CrossRef Google scholar
[94]
Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429
CrossRef Google scholar
[95]
Hong DK, Blauwkamp TA, Kertesz M, Bercovici S, Truong C, Banaei N (2018) Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis 92(3):210–213
CrossRef Google scholar
[96]
Hsu M-T, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280:339–340
CrossRef Google scholar
[97]
Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H (2019) circGSK3beta promotes metastasis in esophageal squamous cell carcinoma by augmenting beta-catenin signaling. Mol Cancer 18:160
CrossRef Google scholar
[98]
Hu Y, Zhu Y, Zhang W, Lang J, Ning L (2019) Utility of plasma circBNC2 as a diagnostic biomarker in epithelial ovarian cancer. Onco Targets Ther 12:9715–9723
CrossRef Google scholar
[99]
Hu ZQ, Zhou SL, Li J, Zhou ZJ, Wang PC, Xin HY, Mao L, Luo CB, Yu SY, Huang XW (2019) Circular RNA sequencing identifies circASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology. https://doi.org/10.1002/hep.31068
CrossRef Google scholar
[100]
Huang M, He YR, Liang LC, Huang Q, Zhu ZQ (2017a) Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol 23:6330–6338
CrossRef Google scholar
[101]
Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G, Chao J, Hu G, Yao H (2017b) Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR1242HG. Autophagy 13:1722–1741
CrossRef Google scholar
[102]
Huang Z, Su R, Deng Z, Xu J, Peng Y, Luo Q, Li J (2017c) Identification of differentially expressed circular RNAs in human monocyte derived macrophages response to Mycobacterium tuberculosis infection. Sci Rep 7:13673
CrossRef Google scholar
[103]
Huang Z, Su R, Qing C, Peng Y, Luo Q, Li J (2018a) Plasma circular RNAs hsa_circ_0001953 and hsa_circ_0009024 as diagnostic biomarkers for active tuberculosis. Front Microbiol 9:2010
CrossRef Google scholar
[104]
Huang Z, Su R, Yao F, Peng Y, Luo Q, Li J (2018b) Circulating circular RNAs hsa_circ_0001204 and hsa_circ_0001747 act as diagnostic biomarkers for active tuberculosis detection. Int J Clin Exp Pathol 11:586–594
[105]
Huang Z-K, Yao F-Y, Xu J-Q, Deng Z, Su R-G, Peng Y-P, Luo Q, Li J-M (2018c) Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem 45:1230–1240
CrossRef Google scholar
[106]
Huang A, Zheng H, Wu Z, Chen M, Huang Y (2020a) Circular RNA–protein interactions: functions, mechanisms, and identification. Theranostics 10:3503–3517
CrossRef Google scholar
[107]
Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, Zhou J, Tang ZY (2020b) Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res 39:20
CrossRef Google scholar
[108]
Iparraguirre L, Muñoz-Culla M, Prada-Luengo I, Castillo-Triviño T, Olascoaga J, Otaegui D (2017) Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet 26:3564–3572
CrossRef Google scholar
[109]
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C (2014) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10:170–177
CrossRef Google scholar
[110]
Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461
CrossRef Google scholar
[111]
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157
CrossRef Google scholar
[112]
Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, Cheng H, Yan J, Zhang S, Yang P (2019) Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep 26:3444–3460.e3445
CrossRef Google scholar
[113]
Jiang M, Lash GE, Zhao X, Long Y, Guo C, Yang H (2018) CircRNA0004904, circRNA-0001855, and PAPP-A: potential novel biomarkers for the prediction of preeclampsia. Cell Physiol Biochem 46:2576–2586
CrossRef Google scholar
[114]
Joosse SA, Pantel K (2015) Tumor-educated platelets as liquid biopsy in cancer patients. Cancer Cell 28:552–554
CrossRef Google scholar
[115]
Jost I, Shalamova LA, Gerresheim GK, Niepmann M, Bindereif A, Rossbach O (2018) Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol 15(8):1–8
CrossRef Google scholar
[116]
Karczewski KJ, Snyder MP (2018) Integrative omics for health and disease. Nat Rev Genet 19:299–310
CrossRef Google scholar
[117]
Kelly S, Greenman C, Cook PR, Papantonis A (2015) Exon skipping is correlated with exon circularization. J Mol Biol 427:2414–2417
CrossRef Google scholar
[118]
Khan M, Reckman YJ, Aufiero S, van den Hoogenhof M, van der Made I, Beqqali A, Koolbergen DR, Rasmussen TB, van der Velden J, Creemers EE (2016) RBM20 regulates circular RNA production from the Titin gene. Circ Res 119:996–1003
CrossRef Google scholar
[119]
Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(2):350–362
CrossRef Google scholar
[120]
Kölling M, Haddad G, Wegmann U, Kistler A, Bosakova A, Seeger H, Hübel K, Haller H, Mueller T, Wüthrich RP (2019) Circular RNAs in urine of kidney transplant patients with acute T cellmediated allograft rejection. Clin Chem 65:1287–1294
CrossRef Google scholar
[121]
Kong S, Yang Q, Tang C, Wang T, Shen X, Ju S (2019) Identification of hsa_circ_0001821 as a novel diagnostic biomarker in gastric cancer via comprehensive circular RNA profiling. Front Genet 10:878
CrossRef Google scholar
[122]
Kossenkov AV, Qureshi R, Dawany NB, Wickramasinghe J, Liu Q, Majumdar SR, Chang C, Widura S, Kumar T, Horng W-H (2018) A gene expression classifier from whole blood distinguishes benign from malignant lung nodules detected by lowdose CT. Cancer Res 79:263–273
CrossRef Google scholar
[123]
Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29(20):2168–2182
CrossRef Google scholar
[124]
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:1–17
CrossRef Google scholar
[125]
Kumar L, Shamsuzzama HR, Haque R, Baghel T, Nazir A (2017) Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Mol Neurobiol 54:7224–7234
CrossRef Google scholar
[126]
Kwapisz D (2017) The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med 5:46
CrossRef Google scholar
[127]
Lam WKJ, Lo YMD (2019) Circular RNAs as urinary biomarkers. Clin Chem 65:1196–1198
CrossRef Google scholar
[128]
Lamb YN, Dhillon S (2017) Epi proColon® 2.0 CE: a blood-based screening test for colorectal cancer. Mol Diagn Ther 21:225–232
CrossRef Google scholar
[129]
Lasda E, Parker R (2016) Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS ONE 11:e0148407
CrossRef Google scholar
[130]
Legnini I, Timoteo GD, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M (2017) CircZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37
CrossRef Google scholar
[131]
Lei B, Zhou J, Xuan X, Tian Z, Zhang M, Gao W, Lin Y, Ni B, Pang H, Fan W (2019) Circular RNA expression profiles of peripheral blood mononuclear cells in hepatocellular carcinoma patients by sequence analysis. Cancer Med 8:1423–1433
CrossRef Google scholar
[132]
Lesko LJ, Atkinson AJ (2001) Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 41:347–366
CrossRef Google scholar
[133]
Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J (2015a) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136
CrossRef Google scholar
[134]
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S (2015b) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25:981–984
CrossRef Google scholar
[135]
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L (2015c) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264
CrossRef Google scholar
[136]
Li M, Xie X, Zhou J, Sheng M, Yin X, Ko E-A, Zhou T, Gu W (2017a) Quantifying circular RNA expression from RNA-seq data using model-based framework. Bioinformatics 33(14):2131–2139
CrossRef Google scholar
[137]
Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y, Zheng Q, Li Y, Wang P, He X (2017b) exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res 46:D106–D112
CrossRef Google scholar
[138]
Li W, Zhong C, Jiao J, Li P, Cui B, Ji C, Ma D (2017c) Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci 18(3):597
CrossRef Google scholar
[139]
Li WH, Song YC, Zhang H, Zhou ZJ, Xie X, Zeng QN, Guo K, Wang T, Xia P, Chang DM (2017d) Decreased expression of hsa_circ_00001649 in gastric cancer and its clinical significance. Dis Markers 2017:4587698
CrossRef Google scholar
[140]
Li X, Liu C-X, Xue W, Zhang Y, Jiang S, Yin Q-F, Wei J, Yao R-W, Yang L, Chen L-L (2017e) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell 67:214–227. e217
CrossRef Google scholar
[141]
Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, Liu H, Bi H, Liu X, Li X (2018a) Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res 37:177
CrossRef Google scholar
[142]
Li L, Li W, Chen N, Zhao H, Xu G, Zhao Y, Pan X, Zhang X, Zhou L, Yu D (2018b) FLI1 exonic circular RNAs as a novel oncogenic driver to promote tumor metastasis in small cell lung cancer. Clin Cancer Res 25:1302–1317
CrossRef Google scholar
[143]
Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W, Yu R, Xiao B, Guo J (2018c) Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl) 96:85–96
CrossRef Google scholar
[144]
Li X, Yang L, Chen L-L (2018d) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442
CrossRef Google scholar
[145]
Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, Zhao X, Zhang Y, Zhen P, Zhu J (2018e) Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/ MET pathway in pancreatic cancer. Cancer Lett 432:237–250
CrossRef Google scholar
[146]
Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R, Thorne RF, Zhang XD, Hu W, Wu M (2019a) CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab 30:157–173
CrossRef Google scholar
[147]
Li S, Zhang J, Tan X, Deng J, Li Y, Piao Y, Li C, Yang W, Mo W, Sun J (2019b) Microarray expression profile of circular RNAs and mRNAs in children with systemic lupus erythematosus. Clin Rheumatol 38:1339–1350
CrossRef Google scholar
[148]
Li XN, Wang ZJ, Ye CX, Zhao BC, Huang XX, Yang L (2019c) Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer. Biomed Pharmacother 112:108611
CrossRef Google scholar
[149]
Li Y, Zhao J, Yu S, Wang Z, He X, Su Y, Guo T, Sheng H, Chen J, Zheng Q (2019d) Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin Chem 65:798–808
CrossRef Google scholar
[150]
Li Z, Zhou Y, Yang G, He S, Qiu X, Zhang L, Deng Q, Zheng F (2019e) Using circular RNA SMARCA5 as a potential novel biomarker for hepatocellular carcinoma. Clin Chim Acta 492:37–44
CrossRef Google scholar
[151]
Li Z, Zhu X, Huang S (2020) Extracellular vesicle long non-coding RNAs and circular RNAs: biology, functions and applications in cancer. Cancer Lett 489:111–120
CrossRef Google scholar
[152]
Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28:2233–2247
CrossRef Google scholar
[153]
Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen L-L, Cherry S, Wilusz JE (2017) The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell 68:940–954.e943
CrossRef Google scholar
[154]
Liang B, Li M, Deng Q, Wang C, Rong J, He S, Xiang Y, Zheng F (2020) CircRNA ZNF609 in peripheral blood leukocytes acts as a protective factor and a potential biomarker for coronary artery disease. Ann Transl Med 8:741
CrossRef Google scholar
[155]
Lin J, Cai D, Li W, Yu T, Mao H, Jiang S, Xiao B (2019) Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem 74:60–68
CrossRef Google scholar
[156]
Liu C-X, Li X, Nan F, Jiang S, Gao X, Guo S-K, Xue W, Cui Y, Dong K, Ding H (2019a) Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177 (4):865–880
CrossRef Google scholar
[157]
Liu XX, Yang YE, Liu X, Zhang MY, Li R, Yin YH, Qu YQ (2019b) A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. J Transl Med 17:50
CrossRef Google scholar
[158]
Liu YT, Han XH, Xing PY, Hu XS, Hao XZ, Wang Y, Li JL, Zhang ZS, Yang ZH, Shi YK (2019c) Circular RNA profiling identified as a biomarker for predicting the efficacy of Gefitinib therapy for nonsmall cell lung cancer. J Thorac Dis 11:1779–1787
CrossRef Google scholar
[159]
Liu H, Lu G, Wang W, Jiang X, Gu S, Wang J, Yan X, He F, Wang J (2020) A panel of circRNAs in the serum serves as biomarkers for Mycobacterium tuberculosis Infection. Front Microbiol 11:1215
CrossRef Google scholar
[160]
Loon EV, Gazut S, Yazdani S, Lerut E, de Loor H, Coemans M, Noël L-H, Thorrez L, Lommel LV, Schuit F (2019) Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: a multicentre, prospective study. EBioMedicine 46:463–472
CrossRef Google scholar
[161]
Lu J, Zhang PY, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, Huang CM, Li P, Zheng CH (2019a) hsa_circ_0000467 promotes cancer progression and serves as a diagnostic and prognostic biomarker for gastric cancer. J Clin Lab Anal 33:e22726
CrossRef Google scholar
[162]
Lu J, Zhang PY, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, Li P, Zheng CH, Huang CM (2019b) Circular RNA hsa_circ_0006848 related to ribosomal protein L6 acts as a novel biomarker for early gastric cancer. Dis Markers 2019:3863458
CrossRef Google scholar
[163]
Lu X, Song M, Wang F (2019c) Circulating circular RNAs as biomarkers of cancer. Non-coding RNA Investig 3:8
CrossRef Google scholar
[164]
Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307
CrossRef Google scholar
[165]
Luo Q, Zhang L, Li X, Fu B, Deng Z, Qing C, Su R, Xu J, Guo Y, Huang Z (2018) Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clin Exp Immunol 194:118–124
CrossRef Google scholar
[166]
Luo Q, Zhang L, Li X, Fu B, Guo Y, Huang Z, Li J (2019) Identification of circular RNAs hsa_circ_0044235 and hsa_circ_0068367 as novel biomarkers for systemic lupus erythematosus. Int J Mol Med 44:1462–1472
CrossRef Google scholar
[167]
Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, Wang W, Sheng H, Pu H, Mo H (2020a) Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med 12:eaax7533
CrossRef Google scholar
[168]
Luo HL, Peng Y, Luo H, Zhang JA, Liu GB, Xu H, Huang GX, Sun YF, Huang J, Zheng BY (2020b) Circular RNA hsa_circ_0001380 in peripheral blood as a potential diagnostic biomarker for active pulmonary tuberculosis. Mol Med Rep 21:1890–1896
CrossRef Google scholar
[169]
Luo Y-H, Yang Y-P, Chien C-S, Yarmishyn AA, Ishola AA, Chien Y, Chen Y-M, Huang T-W, Lee K-Y, Huang W-C (2020c) Plasma level of circular RNA hsa_circ_0000190 correlates with tumor progression and poor treatment response in advanced lung cancers. Cancers 12:1740
CrossRef Google scholar
[170]
Ma J, Qi G, Li L (2020) A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther 13:5293–5307
CrossRef Google scholar
[171]
Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27:172–188
CrossRef Google scholar
[172]
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC (2017) A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 95:1179–1189
CrossRef Google scholar
[173]
MacLean E, Broger T, Yerlikaya S, Fernandez-Carballo BL, Pai M, Denkinger CM (2019) A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol 4:748–758
CrossRef Google scholar
[174]
Marshall K, Mohr S, Khettabi F, Nossova N, Chao S, Bao W, Ma J, Li XJ, Liew CC (2010) A blood-based biomarker panel for stratifying current risk for colorectal cancer. Int J Cancer 126:1177–1186
CrossRef Google scholar
[175]
Mattox AK, Bettegowda C, Zhou S, Papadopoulos N, Kinzler KW, Vogelstein B (2019) Applications of liquid biopsies for cancer. Sci Transl Med 11:eaay1984
CrossRef Google scholar
[176]
Max KEA, Bertram K, Akat K, Bogardus KA, Li J, Morozov P, BenDov IZ, Li X, Weiss ZR, Azizian A (2018) Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci USA 115:201714397
CrossRef Google scholar
[177]
Mayhew MB, Buturovic L, Luethy R, Midic U, Moore AR, Roque JA, Shaller BD, Asuni T, Rawling D, Remmel M (2020) A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections. Nat Commun 11:1177
CrossRef Google scholar
[178]
Mei M, Wang Y, Wang Q, Liu Y, Song W, Zhang M (2019) CircCDYL serves as a new biomarker in Mantle cell lymphoma and promotes cell proliferation. Cancer Manag Res 11:10215–10221
CrossRef Google scholar
[179]
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338
CrossRef Google scholar
[180]
Memczak S, Papavasileiou P, Peters O, Rajewsky N (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE 10: e0141214
CrossRef Google scholar
[181]
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16:94
CrossRef Google scholar
[182]
Miao Q, Zhong Z, Jiang Z, Lin Y, Ni B, Yang W, Tang J (2019) RNAseq of circular RNAs identified circPTPN22 as a potential new activity indicator in systemic lupus erythematosus. Lupus 28:520–528
CrossRef Google scholar
[183]
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, PogosovaAgadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518
CrossRef Google scholar
[184]
Ng WL, Marinov GK, Liau ES, Lam YL, Lim Y-Y, Ea C-K (2016) Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biol 13:861–871
CrossRef Google scholar
[185]
Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M, Wolkers MC (2018) Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res 46:8168–8180
CrossRef Google scholar
[186]
Ouyang Q, Huang Q, Jiang Z, Zhao J, Shi GP, Yang M (2018) Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol Immunol 101:531–538
CrossRef Google scholar
[187]
Ouyang Q, Wu J, Jiang Z, Zhao J, Wang R, Lou A, Zhu D, Shi GP, Yang M (2017) Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem 42:651–659
CrossRef Google scholar
[188]
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E (2017) Translation of circRNAs. Mol Cell 66:9–21
CrossRef Google scholar
[189]
Pan B, Qin J, Liu X, He B, Wang X, Pan Y, Sun H, Xu T, Xu M, Chen X (2019) Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet 10:1096
CrossRef Google scholar
[190]
Pardini B, Sabo A, Birolo G, Calin G (2019) Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers 11:1170
CrossRef Google scholar
[191]
Park O, Ha H, Lee Y, Boo S, Kwon D, Song H, Kim Y (2019) Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell 74(3):494–507
CrossRef Google scholar
[192]
Peng YK, Pu K, Su HX, Zhang J, Zheng Y, Ji R, Guo QH, Wang YP, Guan QL, Zhou YN (2020) Circular RNA hsa_circ_0010882 promotes the progression of gastric cancer via regulation of the PI3K/Akt/mTOR signaling pathway. Eur Rev Med Pharmacol Sci 24:1142–1151
[193]
Ping L, Jian-Jun C, Chu-Shu L, Guang-Hua L, Ming Z (2019) High circ_100053 predicts a poor outcome for chronic myeloid leukemia and is involved in imatinib resistance. Oncol Res. https://doi.org/10.3727/096504018x15412701483326
CrossRef Google scholar
[194]
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357: eaam8526
CrossRef Google scholar
[195]
Powers KA, Ghani AC, Miller WC, Hoffman IF, Pettifor AE, Kamanga G, Martinson FE, Cohen MS (2011) The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study. Lancet 378:256–268
CrossRef Google scholar
[196]
Preußer C, Hung L-H, Schneider T, Schreiner S, Hardt M, Moebus A, Santoso S, Bindereif A (2018) Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles 7:1424473
CrossRef Google scholar
[197]
Qian Z, Liu H, Li M, Shi J, Li N, Zhang Y, Zhang X, Lv J, Xie X, Bai Y (2018) Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine 27:18–26
CrossRef Google scholar
[198]
Qian Z, Lv J, Kelly GT, Wang H, Zhang X, Gu W, Yin X, Wang T, Zhou T (2016) Expression of nuclear factor, erythroid 2-like 2-mediated genes differentiates tuberculosis. Tuberculosis 99:56–62
CrossRef Google scholar
[199]
Qiao GL, Chen L, Jiang WH, Yang C, Yang CM, Song LN, Chen Y, Yan HL, Ma LJ (2019) Hsa_circ_0003998 may be used as a new biomarker for the diagnosis and prognosis of hepatocellular carcinoma. Onco Targets Ther 12:5849–5860
CrossRef Google scholar
[200]
Ramilo O, Mejias A (2017) Host transcriptomics for diagnosis of infectious diseases: one step closer to clinical application. Eur Respir J 49:1700993
CrossRef Google scholar
[201]
Ravnik-Glavač M, Glavač D (2020) Circulating RNAs as potential biomarkers in amyotrophic lateral sclerosis. Int J Mol Sci 21:1714
CrossRef Google scholar
[202]
Revenfeld ALS, Bæk R, Nielsen MH, Stensballe A, Varming K, Jørgensen M (2014) Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther 36:830–846
CrossRef Google scholar
[203]
Richey LE, Halperin J (2013) Acute human immunodeficiency virus infection. Am J Med Sci 345:136–142
CrossRef Google scholar
[204]
Rong D, Lu C, Zhang B, Fu K, Zhao S, Tang W, Cao H (2019) CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol Cancer 18:25
CrossRef Google scholar
[205]
Rose S, Contrepois K, Moneghetti KJ, Zhou W, Mishra T, Mataraso S, Dagan-Rosenfeld O, Ganz AB, Dunn J, Hornburg D (2019) A longitudinal big data approach for precision health. Nat Med 25:792–804
CrossRef Google scholar
[206]
Ross RW, Galsky MD, Scher HI, Magidson J, Wassmann K, Lee G-S, Katz L, Subudhi SK, Anand A, Fleisher M (2012) A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol 13:1105–1113
CrossRef Google scholar
[207]
Rubis G, Krishnan S, Bebawy M (2019) Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci 40:172–186
CrossRef Google scholar
[208]
Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885
CrossRef Google scholar
[209]
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Celltype specific features of circular RNA expression. PLoS Genet 9 (9):e1003777
CrossRef Google scholar
[210]
Salzman J, Gawad C, Wang P, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. https://doi.org/10.1371/journal.pone.0030733
CrossRef Google scholar
[211]
Sambarey A, Devaprasad A, Mohan A, Ahmed A, Nayak S, Swaminathan S, D’Souza G, Jesuraj A, Dhar C, Babu S (2017) Unbiased identification of blood-based biomarkers for pulmonary tuberculosis by modeling and mining molecular interaction networks. EBioMedicine 15:112–126
CrossRef Google scholar
[212]
Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73:3852–3856
CrossRef Google scholar
[213]
Schnell A, Schmidl C, Herr W, Siska PJ (2018) The peripheral and intratumoral immune cell landscape in cancer patients: a proxy for tumor biology and a tool for outcome prediction. Biomedicines 6:25
CrossRef Google scholar
[214]
Shaked Y (2019) The pro-tumorigenic host response to cancer therapies. Nat Rev Cancer 19:667–685
CrossRef Google scholar
[215]
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, Chen C, Chang W, Ping Y, Ji P (2020) Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3pTGF-β1 axis. Mol Cancer 19:117
CrossRef Google scholar
[216]
Shang Q, Yang Z, Jia R, Ge S (2019) The novel roles of circRNAs in human cancer. Mol Cancer 18:6
CrossRef Google scholar
[217]
Shao Y, Tao X, Lu R, Zhang H, Ge J, Xiao B, Ye G, Guo J (2020) Hsa_circ_0065149 is an indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res 26:1475–1482
CrossRef Google scholar
[218]
Sheng R, Li X, Wang Z, Wang X (2020) Circular RNAs and their emerging roles as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Lett 473:139–147
CrossRef Google scholar
[219]
Shi L, Tao C, Tang Y, Xia Y, Li X, Wang X (2020) Hypoxia-induced hsa_circ_0000826 is linked to liver metastasis of colorectal cancer. J Clin Lab Anal 34(9):e23405
CrossRef Google scholar
[220]
Showe MK, Vachani A, Kossenkov AV, Yousef M, Nichols C, Nikonova EV, Chang C, Kucharczuk J, Tran B, Wakeam E (2009) Gene expression profiles in peripheral blood mononuclear cells can distinguish patients with non-small cell lung cancer from patients with nonmalignant lung disease. Cancer Res 69:9202–9210
CrossRef Google scholar
[221]
Shuai M, Hong J, Huang D, Zhang X, Tian Y (2018) Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity. Oncol Lett 16:6495–6501
CrossRef Google scholar
[222]
Siravegna G, Marsoni S, Siena S, Bardelli A (2017) Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 14:531–548
CrossRef Google scholar
[223]
Smid M, Wilting SM, Uhr K, Rodríguez-González GF, de Weerd V, van der Smissen WJC, van der Vlugt-Daane M, van Galen A, Nik-Zainal S, Butler A (2019) The circular RNome of primary breast cancer. Genome Res 29:356–366
CrossRef Google scholar
[224]
Sole C, Arnaiz E, Manterola L, Otaegui D, Lawrie CH (2019) The circulating transcriptome as a source of cancer liquid biopsy biomarkers. Semin Cancer Biol 58:100–108
CrossRef Google scholar
[225]
Song R, Bai Y, Li X, Zhu J, Zhang H, Shi Y, Li K, Wang B, Zhang H, Yang Y (2020) Plasma circular RNA DYM related to major depressive disorder and rapid antidepressant effect treated by visual cortical repetitive transcranial magnetic stimulation. J Affect Disord 274:486–493
CrossRef Google scholar
[226]
Sonnenschein K, Wilczek A, de Gonzalo-Calvo D, Pfanne A, Derda A, Zwadlo C, Bavendiek U, Bauersachs J, Fiedler J, Thum T (2019) Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci Rep 9:20350
CrossRef Google scholar
[227]
Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:1–26
CrossRef Google scholar
[228]
Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung L-H, Bindereif A (2014) Exon circularization requires canonical splice signals. Cell Rep 10:103–111
CrossRef Google scholar
[229]
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y (2019) Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer 18:90
CrossRef Google scholar
[230]
Sun J-Y, Shi Y, Cai X-Y, Liu J (2020) Potential diagnostic and therapeutic value of circular RNAs in cardiovascular diseases. Cell Signal 71:109604
CrossRef Google scholar
[231]
Sun X-H, Wang Y-T, Li G-F, Zhang N, Fan L (2020) Serum-derived three-circRNA signature as a diagnostic biomarker for hepatocellular carcinoma. Cancer Cell Int 20:226
CrossRef Google scholar
[232]
Sun Y, Jiang X, Lv Y, Liang X, Zhao B, Bian W, Zhang D, Jiang J, Zhang C (2020) Circular RNA expression profiles in plasma from patients with heart failure related to platelet activity. Biomolecules 10(2):187
CrossRef Google scholar
[233]
Surinova S, Radová L, Choi M, Srovnal J, Brenner H, Vitek O, Hajdúch M, Aebersold R (2015) Non-invasive prognostic protein biomarker signatures associated with colorectal cancer. EMBO Mol Med 7:1153–1165
CrossRef Google scholar
[234]
Sweeney TE, Perumal TM, Henao R, Nichols M, Howrylak JA, Choi AM, Bermejo-Martin JFF, Almansa R, Tamayo E, Davenport EE (2018) A community approach to mortality prediction in sepsis via gene expression analysis. Nat Commun 9:694
CrossRef Google scholar
[235]
Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126
CrossRef Google scholar
[236]
Szabo L, Salzman J (2016) Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet 17:679–692
CrossRef Google scholar
[237]
Tan S, Gou Q, Pu W, Guo C, Yang Y, Wu K, Liu Y, Liu L, Wei Y-Q, Peng Y (2018) Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res 28:693–695
CrossRef Google scholar
[238]
Tang W, Fu K, Sun H, Rong D, Wang H, Cao H (2018) CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer 17:137
CrossRef Google scholar
[239]
Tang X, Liu S, Ding Y, Guo C, Guo J, Hua K, Qiu J (2020) Serum circular FoxO3a serves as a novel prognostic biomarker in squamous cervical cancer. Cancer Manag Res 12:2531–2540
CrossRef Google scholar
[240]
Tao X, Shao Y, Lu R, Ye Q, Xiao B, Ye G, Guo J (2020) Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol Res Pract 216:152763
CrossRef Google scholar
[241]
Teng L, Chen Y, Chen H, He X, Wang J, Peng Y, Duan H, Li H, Lin D, Shao B (2017) Circular RNA hsa_circ_0021001 in peripheral blood: a potential novel biomarker in the screening of intracranial aneurysm. Oncotarget 8:107125–107133
CrossRef Google scholar
[242]
Torrano V, Royo F, Peinado H, Loizaga-Iriarte A, Unda M, FalcónPerez JM, Carracedo A (2016) Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Curr Opin Pharmacol 29:47–53
CrossRef Google scholar
[243]
Tsalik EL, Henao R, Nichols M, Burke T, Ko ER, McClain MT, Hudson LL, Mazur A, Freeman DH, Veldman T (2016) Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med 8:322ra311
CrossRef Google scholar
[244]
Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233
CrossRef Google scholar
[245]
Valk PJM, Verhaak RGW, Beijen MA, Erpelinck CAJ, van DoornKhosrovani SBvW, Boer JM, Beverloo HB, Moorhouse MJ, van der Spek PJ, Löwenberg B (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628
CrossRef Google scholar
[246]
van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, Adami E, Faber AB, Kirchner M, Maatz H, Blachut S, Sandmann C-L (2019) The translational landscape of the human heart. Cell 178 (1):242–260
CrossRef Google scholar
[247]
Vargas AJ, Harris CC (2016) Biomarker development in the precision medicine era: lung cancer as a case study. Nat Rev Cancer 16:525–537
CrossRef Google scholar
[248]
Vargas J, Lima JA, Kraus WE, Douglas PS, Rosenberg S (2013) Use of the Corus® CAD gene expression test for assessment of obstructive coronary artery disease likelihood in symptomatic non-diabetic patients. PLoS Curr. https://doi.org/10.1371/currents.eogt.0f04f6081905998fa92b99593478aeab
[249]
Vausort M, Salgado-Somoza A, Zhang L, Leszek P, Scholz M, Teren A, Burkhardt R, Thiery J, Wagner DR, Devaux Y (2016) Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol 68:1247–1248
CrossRef Google scholar
[250]
Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245
CrossRef Google scholar
[251]
Vicens Q, Westhof E (2014) Biogenesis of circular RNAs. Cell 159:13–14
CrossRef Google scholar
[252]
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu Y-M, Dhanasekaran SM, Engelke CG, Cao X (2019) The landscape of circular RNA in cancer. Cell 176:869–881.e813
CrossRef Google scholar
[253]
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223–238
CrossRef Google scholar
[254]
Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21:172–179
CrossRef Google scholar
[255]
Wang PL, Bao Y, Yee M-C, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE 9(6): e90859
CrossRef Google scholar
[256]
Wang YM, Huang LM, Li DR, Shao JH, Xiong SL, Wang CM, Lu SM (2017a) Hsa_circ_0101996 combined with hsa_circ_0101119 in peripheral whole blood can serve as the potential biomarkers for human cervical squamous cell carcinoma. Int J Clin Exp Pathol 10:11924–11931
[257]
Wang Z-Y, Guo Z-D, Li J-M, Zhao Z-Z, Fu Y-Y, Zhang C-M, Zhang Y, Liu L-N, Qian J, Liu L-N (2017b) Genome-wide search for competing endogenous RNAs responsible for the effects induced by Ebola virus replication and transcription using a trVLP system. Front Cell Infect Microbiol 7:479
CrossRef Google scholar
[258]
Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, Li L, Yang B, Chen J, Chen S (2019a) Identification of circular RNA hsa_circ_0001879 and hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis 286:88–96
CrossRef Google scholar
[259]
Wang Q, Zhang Q, Sun H, Tang W, Yang L, Xu Z, Liu Z, Jin H, Cao X (2019b) Circ-TTC17 promotes proliferation and migration of esophageal squamous cell carcinoma. Dig Dis Sci 64:751–758
CrossRef Google scholar
[260]
Wang W, Dong R, Guo Y, He J, Shao C, Yi P, Yu F, Gu D, Zheng J (2019c) CircMTO1 inhibits liver fibrosis via regulation of miR-175p and Smad7. J Cell Mol Med 23:5486–5496
CrossRef Google scholar
[261]
Wang W, Wang J, Zhang X, Liu G (2019d) Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxanecombined chemotherapy and relapse in high-grade serous ovarian cancer. Onco Targets Ther 12:7451–7457
CrossRef Google scholar
[262]
Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L (2019e) Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer 18:116
CrossRef Google scholar
[263]
Wang Y, Wu C, Zhang F, Zhang Y, Ren Z, Lammi MJ, Guo X (2019f) Screening for differentially expressed circular RNAs in the cartilage of osteoarthritis patients for their diagnostic value. Genet Test Mol Biomark 23:706–716
CrossRef Google scholar
[264]
Wang J, Kong J, Nie Z, Chen D, Qiang J, Gao W, Chen X (2020a) Circular RNA hsa_circ_0066755 as an oncogene via sponging miR-651 and as a promising diagnostic biomarker for nasopharyngeal carcinoma. Int J Med Sci 17:1499–1507
CrossRef Google scholar
[265]
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M, Xu S (2020b) CircRNA-002178 act as a ceRNA to promote PDL1/ PD1 expression in lung adenocarcinoma. Cell Death Dis 11:32
CrossRef Google scholar
[266]
Wang Q, Liu H, Liu Z, Yang L, Zhou J, Cao X, Sun H (2020c) CircSLC7A5, a potential prognostic circulating biomarker for detection of ESCC. Cancer Genet 240:33–39
CrossRef Google scholar
[267]
Wang W, Li Y, Li X, Liu B, Han S, Li X, Zhang B, Li J, Sun S (2020d) Circular RNA circ-FOXP1 induced by SOX9 promotes hepatocellular carcinoma progression via sponging miR-875-3p and miR-421. Biomed Pharmacother 121:109517
CrossRef Google scholar
[268]
Wang Y, Wu C, Zhang Y, Yang Y, Ren Z, Lammi MJ, Guo X (2020e) Screening for differentially expressed circRNA between KashinBeck disease and osteoarthritis patients based on circRNA chips. Clin Chim Acta 501:92–101
CrossRef Google scholar
[269]
Warsinske H, Vashisht R, Khatri P (2019) Host-response-based gene signatures for tuberculosis diagnosis: a systematic comparison of 16 signatures. PLoS Med 16:e1002786
CrossRef Google scholar
[270]
Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin H, Ma Y, Goel A (2017) Circular RNA ciRS-7—a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23:3918–3928
CrossRef Google scholar
[271]
Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9:1966–1980
CrossRef Google scholar
[272]
Wilusz JE (2015) Repetitive elements regulate circular RNA biogenesis. Mob Genet Elem 5:39–45
CrossRef Google scholar
[273]
Wu H, Yang L, Chen L-L (2017a) The diversity of long noncoding RNAs and their generation. Trends Genet 33:540–552
CrossRef Google scholar
[274]
Wu N, Jin L, Cai J (2017b) Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 39:454–459
CrossRef Google scholar
[275]
Wu J, Li J, Liu H, Yin J, Zhang M, Yu Z, Miao H (2019a) Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children. J Clin Lab Anal 33:e22998
CrossRef Google scholar
[276]
Wu J, Zhou Q, Niu Y, Chen J, Zhu Y, Ye S, Xi Y, Wang F, Qiu H, Bu S (2019b) Aberrant expression of serum circANRIL and hsa_circ_0123996 in children with Kawasaki disease. J Clin Lab Anal 33:e22874
CrossRef Google scholar
[277]
Wu W, Ji P, Zhao F (2020a) CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol 21:101
CrossRef Google scholar
[278]
Wu WP, Pan YH, Cai MY, Cen JM, Chen C, Zheng L, Liu X, Xiong XD (2020b) Plasma-derived exosomal circular RNA hsa_circ_0005540 as a novel diagnostic biomarker for coronary artery disease. Dis Markers 2020:3178642
CrossRef Google scholar
[279]
Wu Z, Sun H, Liu W, Zhu H, Fu J, Yang C, Fan L, Wang L, Liu Y, Xu W (2020c) Circ-RPL15: a plasma circular RNA as novel oncogenic driver to promote progression of chronic lymphocytic leukemia. Leukemia 34:919–923
CrossRef Google scholar
[280]
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, Huang N, Yang X, Xiao F, Liu D (2019) A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer 18:131
CrossRef Google scholar
[281]
Xiao M-S, Ai Y, Wilusz JE (2020) Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol 30(3):226–240
CrossRef Google scholar
[282]
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y (2020a) Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer 19:112
CrossRef Google scholar
[283]
Xie R, Zhang Y, Zhang J, Li J, Zhou X (2020b) The role of circular RNAs in immune-related diseases. Front Immunol 11:545
CrossRef Google scholar
[284]
Xie Y, Li J, Li P, Li N, Zhang Y, Binang H, Zhao Y, Duan W, Chen Y, Wang Y (2020c) RNA-Seq profiling of serum exosomal circular RNAs reveals circ-PNN as a potential biomarker for human colorectal cancer. Front Oncol 10:982
CrossRef Google scholar
[285]
Xiong S, Peng H, Ding X, Wang X, Wang L, Wu C, Wang S, Xu H, Liu Y (2019) Circular RNA expression profiling and the potential role of hsa_circ_0089172 in Hashimoto’s thyroiditis via sponging miR125a-3p. Mol Ther Nucleic Acids 17:38–48
CrossRef Google scholar
[286]
Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453
CrossRef Google scholar
[287]
Xu H, Gong Z, Shen Y, Fang Y, Zhong S (2018a) Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics 10:187–197
CrossRef Google scholar
[288]
Xu Z, Li P, Fan L, Wu M (2018b) The potential role of circRNA in tumor immunity regulation and immunotherapy. Front Immunol 9:9
CrossRef Google scholar
[289]
Xu M, Xie F, Tang X, Wang T, Wang S (2020a) Insights into the role of circular RNA in macrophage activation and fibrosis disease. Pharmacol Res 156:104777
CrossRef Google scholar
[290]
Xu Y, Leng K, Yao Y, Kang P, Liao G, Han Y, Shi G, Ji D, Huang P, Zheng W (2020b) A novel circular RNA, circ-CCAC1, contributes to CCA progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. https://doi.org/10.1002/hep.31493
[291]
Yan B, Zhang Y, Liang C, Liu B, Ding F, Wang Y, Zhu B, Zhao R, Yu X-Y, Li Y (2020) Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/FOXO3a pathway. Theranostics 10:6728–6742
CrossRef Google scholar
[292]
Yang F, Liu DY, Guo JT, Ge N, Zhu P, Liu X, Wang S, Wang GX, Sun SY (2017a) Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol 23:8345–8354
CrossRef Google scholar
[293]
Yang Q, Du WW, Wu N, Yang W, Awan F, Fang L, Ma J, Li X, Zeng Y, Yang Z (2017b) A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ 24 (9):1609–1620
CrossRef Google scholar
[294]
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen L, Wang Y (2017c) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27:626–641
CrossRef Google scholar
[295]
Yang L, Fu J, Zhou Y (2018) Circular RNAs and their emerging roles in immune regulation. Front Immunol 9:2977
CrossRef Google scholar
[296]
Yang X, Li J, Wu Y, Ni B, Zhang B (2019) Aberrant dysregulated circular RNAs in the peripheral blood mononuclear cells of patients with rheumatoid arthritis revealed by RNA sequencing: novel diagnostic markers for RA. Scand J Clin Lab Investig 79:551–559
CrossRef Google scholar
[297]
Yao G, Niu W, Zhu X, He M, Kong L, Chen S, Zhang L, Cheng Z (2019) hsa_circRNA_104597: a novel potential diagnostic and therapeutic biomarker for schizophrenia. Biomark Med 13:331–340
CrossRef Google scholar
[298]
Ye DX, Wang SS, Huang Y, Chi P (2019) A 3-circular RNA signature as a noninvasive biomarker for diagnosis of colorectal cancer. Cancer Cell Int 19:276
CrossRef Google scholar
[299]
Yi Z, Gao K, Li R, Fu Y (2018) Dysregulated circRNAs in plasma from active tuberculosis patients. J Cell Mol Med 22:4076–4084
CrossRef Google scholar
[300]
Yin WB, Yan MG, Fang X, Guo JJ, Xiong W, Zhang RP (2018) Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta 487:363–368
CrossRef Google scholar
[301]
Yoshimoto R, Rahimi K, Hansen T, Kjems J, Mayeda A (2019) Biosynthesis of circular RNA ciRS-7/CDR1as is mediated by mammalian-wide interspersed repeats (MIRs). Biorxiv411231
CrossRef Google scholar
[302]
You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610
CrossRef Google scholar
[303]
Yu C-Y, Li T-C, Wu Y-Y, Yeh C-H, Chiang W, Chuang C-Y, Kuo H-C (2017) The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun 8:1149
CrossRef Google scholar
[304]
Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584
CrossRef Google scholar
[305]
Zaas AK, Chen M, Varkey J, Veldman T, Hero AO, Lucas J, Huang Y, Turner R, Gilbert A, Lambkin-Williams R (2009) Gene expression signatures diagnose Influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe 6:207–217
CrossRef Google scholar
[306]
Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, Mahomed H, Erasmus M, Whatney W, Hussey GD (2016) A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387:2312–2322
CrossRef Google scholar
[307]
Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP (2018) The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev Mol Diagn 18:133–145
CrossRef Google scholar
[308]
Zemmour H, Planer D, Magenheim J, Moss J, Neiman D, Gilon D, Korach A, Glaser B, Shemer R, Landesberg G (2018) Noninvasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat Commun 9:1443
CrossRef Google scholar
[309]
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806
CrossRef Google scholar
[310]
Zhang X-O, Wang H-B, Zhang Y, Lu X, Chen L-L, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147
CrossRef Google scholar
[311]
Zhang YG, Yang HL, Long Y, Li WL (2016) Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG 123:2113–2118
CrossRef Google scholar
[312]
Zhang Y, Li J, Yu J, Liu H, Shen Z, Ye G, Mou T, Qi X, Li G (2017) Circular RNAs signature predicts the early recurrence of stage III gastric cancer after radical surgery. Oncotarget 8:22936–22943
CrossRef Google scholar
[313]
Zhang C, Wang X, Chen Y, Wu Z, Zhang C, Shi W (2018a) The down-regulation of hsa_circ_0012919, the sponge for miR-125a3p, contributes to DNA methylation of CD11a and CD70 in CD4 (+) T cells of systemic lupus erythematous. Clin Sci (Lond) 132:2285–2298
CrossRef Google scholar
[314]
Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, Fan Q, Li J, Ning T, Tian F (2018b) Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene 38:2844–2859
CrossRef Google scholar
[315]
Zhang J, Xu Y, Xu S, Liu Y, Yu L, Li Z, Xue X, Wang H (2018c) Plasma circular RNAs, hsa_circRNA_025016, predict postoperative atrial fibrillation after isolated off-pump coronary artery bypass grafting. J Am Heart Assoc 7:e006642
CrossRef Google scholar
[316]
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H (2018d) A peptide encoded by circular form of LINCPINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 9:4475
CrossRef Google scholar
[317]
Zhang MY, Wang JB, Zhu ZW, Li LJ, Liu RS, Yang XK, Leng RX, Li XM, Pan HF, Ye DQ (2018e) Differentially expressed circular RNAs in systemic lupus erythematosus and their clinical significance. Biomed Pharmacother 107:1720–1727
CrossRef Google scholar
[318]
Zhang W, Yang S, Liu Y, Wang Y, Lin T, Li Y, Zhang R (2018f) Hsa_circ_0007534 as a blood-based marker for the diagnosis of colorectal cancer and its prognostic value. Int J Clin Exp Pathol 11:1399–1406
[319]
Zhang X, Xu Y, Qian Z, Zheng W, Wu Q, Chen Y, Zhu G, Liu Y, Bian Z, Xu W (2018g) CircRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death Dis 9:1091
CrossRef Google scholar
[320]
Zhang X, Zhou H, Jing W, Luo P, Qiu S, Liu X, Zhu M, Liang C, Yu M, Tu J (2018h) The circular RNA hsa_circ_0001445 regulates the proliferation and migration of hepatocellular carcinoma and may serve as a diagnostic biomarker. Dis Markers 2018:3073467
CrossRef Google scholar
[321]
Zhang Y, Zhang H, An M, Zhao B, Ding H, Zhang Z, He Y, Shang H, Han X (2018i) Crosstalk in competing endogenous RNA networks reveals new circular RNAs involved in the pathogenesis of early HIV infection. J Transl Med 16:332
CrossRef Google scholar
[322]
Zhang Z, Yang T, Xiao J (2018j) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274
CrossRef Google scholar
[323]
Zhang J, Li J, Saucier JB, Feng Y, Jiang Y, Sinson J, McCombs AK, Schmitt ES, Peacock S, Chen S (2019a) Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat Med 25:1–9
CrossRef Google scholar
[324]
Zhang Y, Chen Y, Yao H, Lie Z, Chen G, Tan H, Zhou Y (2019b) Elevated serum circ_0068481 levels as a potential diagnostic and prognostic indicator in idiopathic pulmonary arterial hypertension. Pulm Circ 9:2045894019888416
CrossRef Google scholar
[325]
Zhang P-F, Gao C, Huang X-Y, Lu J-C, Guo X-J, Shi G-M, Cai J-B, Ke A-W (2020a) Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer 19:110
CrossRef Google scholar
[326]
Zhang S, Song G, Yuan J, Qiao S, Xu S, Si Z, Yang Y, Xu X, Wang A (2020b) Circular RNA circ_0003204 inhibits proliferation, migration and tube formation of endothelial cell in atherosclerosis via miR-370-3p/TGFbetaR2/phosph-SMAD3 axis. J Biomed Sci 27:11
CrossRef Google scholar
[327]
Zhao Z, Li X, Gao C, Jian D, Hao P, Rao L, Li M (2017a) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918
CrossRef Google scholar
[328]
Zhao Z, Li X, Jian D, Hao P, Rao L, Li M (2017b) Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of prediabetes and type 2 diabetes mellitus. Acta Diabetol 54:237–245
CrossRef Google scholar
[329]
Zhao K, Zhao Q, Guo Z, Chen Z, Hu Y, Su J, Chen L, He Z, Cai X, Chen M (2018a) Hsa_circ_0001275: a potential novel diagnostic biomarker for postmenopausal osteoporosis. Cell Physiol Biochem 46:2508–2516
CrossRef Google scholar
[330]
Zhao Q, Chen S, Li T, Xiao B, Zhang X (2018b) Clinical values of circular RNA 0000181 in the screening of gastric cancer. J Clin Lab Anal 32:e22333
CrossRef Google scholar
[331]
Zhao T, Zheng Y, Hao D, Jin X, Luo Q, Guo Y, Li D, Xi W, Xu Y, Chen Y (2019) Blood circRNAs as biomarkers for the diagnosis of community-acquired pneumonia. J Cell Biochem 120:16483–16494
CrossRef Google scholar
[332]
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215
CrossRef Google scholar
[333]
Zheng S, Gu T, Bao X, Sun J, Zhao J, Zhang T, Zhang L (2019) Circular RNA hsa_circ_0014243 may serve as a diagnostic biomarker for essential hypertension. Exp Ther Med 17:1728–1736
CrossRef Google scholar
[334]
Zheng S, He X, Sun J, Li Q, Zhang T, Zhang L (2020) The upregulated hsa-circRNA9102-5 may be a risk factor for essential hypertension. J Clin Lab Anal. https://doi.org/10.1002/jcla.23339
CrossRef Google scholar
[335]
Zhou T, Xie X, Li M, Shi J, Zhou JJ, Knox KS, Wang T, Chen Q, Gu W (2018a) Rat BodyMap transcriptomes reveal unique circular RNA features across tissue types and developmental stages. RNA 24:1443–1456
CrossRef Google scholar
[336]
Zhou X, Liu HY, Wang WY, Zhao H, Wang T (2018b) Hsa_circ_0102533 serves as a blood-based biomarker for non-smallcell lung cancer diagnosis and regulates apoptosis in vitro. Int J Clin Exp Pathol 11:4395–4404
[337]
Zhou W, Sailani RM, Contrepois K, Zhou Y, Ahadi S, Leopold SR, Zhang MJ, Rao V, Avina M, Mishra T (2019a) Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569:663–671
CrossRef Google scholar
[338]
Zhou Z, Sun B, Huang S, Zhao L (2019b) Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis 10:503
CrossRef Google scholar
[339]
Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X, Han S, Wu G (2017) hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J 284:2170–2182
CrossRef Google scholar
[340]
Zhu K, Niu L, Wang J, Wang Y, Zhou J, Wang F, Cheng Y, Zhang Q, Li H (2019a) Circular RNA hsa_circ_0000885 levels are increased in tissue and serum samples from patients with osteosarcoma. Med Sci Monit 25:1499–1505
CrossRef Google scholar
[341]
Zhu X, Ding J, Wang B, Wang J, Xu M (2019b) Circular RNA DLGAP4 is down-regulated and negatively correlates with severity, inflammatory cytokine expression and pro-inflammatory gene miR-143 expression in acute ischemic stroke patients. Int J Clin Exp Pathol 12:941–948
[342]
Zhuang Z-G, Zhang J-A, Luo H-L, Liu G-B, Lu Y-B, Ge N-H, Zheng B-Y, Li RX, Chen C, Wang X (2017) The circular RNA of peripheral blood mononuclear cells: Hsa_circ_0005836 as a new diagnostic biomarker and therapeutic target of active pulmonary tuberculosis. Mol Immunol 90:264–272
CrossRef Google scholar
[343]
Zuo L, Li C, Zu J, Yao H, Yan F (2020) Circular RNA FUNDC1 improves prediction of stroke associated infection in acute ischemic stroke patients with high risk. Biosci Rep. https://doi.org/10.1042/BSR20200902
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(2348 KB)

Accesses

Citations

Detail

Sections
Recommended

/