Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy
Pranavi Koppula, Li Zhuang, Boyi Gan
Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy
The cystine/glutamate antiporter SLC7A11 (also commonly known as xCT) functions to import cystine for glutathione biosynthesis and antioxidant defense and is overexpressed in multiple human cancers. Recent studies revealed that SLC7A11 overexpression promotes tumor growth partly through suppressing ferroptosis, a form of regulated cell death induced by excessive lipid peroxidation. However, cancer cells with high expression of SLC7A11 (SLC7A11high) also have to endure the significant cost associated with SLC7A11-mediated metabolic reprogramming, leading to glucoseand glutamine-dependency in SLC7A11high cancer cells, which presents potential metabolic vulnerabilities for therapeutic targeting in SLC7A11high cancer. In this review, we summarize diverse regulatory mechanisms of SLC7A11 in cancer, discuss ferroptosis-dependent and-independent functions of SLC7A11 in promoting tumor development, explore the mechanistic basis of SLC7A11-induced nutrient dependency in cancer cells, and conceptualize therapeutic strategies to target SLC7A11 in cancer treatment. This review will provide the foundation for further understanding SLC7A11 in ferroptosis, nutrient dependency, and tumor biology and for developing novel effective cancer therapies.
SLC7A11 / xCT / cystine / cysteine / ferroptosis / nutrient dependency / cancer therapy
[1] |
Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD (2020) Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol 27:436–447
CrossRef
Google scholar
|
[2] |
Artegiani B, van Voorthuijsen L, Lindeboom RGH, Seinstra D, Heo I, Tapia P, Lopez-Iglesias C, Postrach D, Dayton T, Oka R
CrossRef
Google scholar
|
[3] |
Badeaux AI, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224
CrossRef
Google scholar
|
[4] |
Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A,Kapilian J, Firl CEM
CrossRef
Google scholar
|
[5] |
Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263
|
[6] |
Bannai S, Ishii T (1988) A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts . J Cell Physiol 137:360–366
CrossRef
Google scholar
|
[7] |
Bannai S, Tsukeda H, Okumura H (1977) Effect of antioxidants on cultured human diploid fibroblasts exposed to cystine-free medium. Biochem Biophys Res Commun 74:1582–1588
CrossRef
Google scholar
|
[8] |
Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17:351–359
CrossRef
Google scholar
|
[9] |
Cancer Genome Atlas Research, N (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525
CrossRef
Google scholar
|
[10] |
Cancer Genome Atlas Research, N (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550
CrossRef
Google scholar
|
[11] |
Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N
CrossRef
Google scholar
|
[12] |
Cao JY, Poddar A, Magtanong L, Lumb JH, Mileur TR, Reid MA, Dovey CM, Wang J, Locasale JW, Stone E
CrossRef
Google scholar
|
[13] |
Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G (2013) BAP1 and cancer. Nat Rev Cancer 13:153–159
CrossRef
Google scholar
|
[14] |
Chen D,Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N (2017) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36:5593–5608
CrossRef
Google scholar
|
[15] |
Chintala S, Li W, Lamoreux ML, Ito S, Wakamatsu K, Sviderskaya EV, Bennett DC, Park YM, Gahl WA, Huizing M
CrossRef
Google scholar
|
[16] |
Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429
CrossRef
Google scholar
|
[17] |
Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O, Gu W (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21:579–591
CrossRef
Google scholar
|
[18] |
Cobler L, Zhang H, Suri P, Park C, Timmerman LA (2018) xCT inhibition sensitizes tumors to gamma-radiation via glutathione reduction. Oncotarget 9:32280–32297
CrossRef
Google scholar
|
[19] |
Combs JA, DeNicola GM (2019) The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel) 11:678
CrossRef
Google scholar
|
[20] |
Conrad M, Sato H (2012) The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids 42:231–246
CrossRef
Google scholar
|
[21] |
Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13:828–851
CrossRef
Google scholar
|
[22] |
Daher B, Parks SK, Durivault J, Cormerais Y, Baidarjad H, Tambutte E, Pouyssegur J, Vucetic M (2019) Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses . Cancer Res 79:3877–3890
CrossRef
Google scholar
|
[23] |
Dai L, Cao Y, Chen Y,Parsons C, Qin Z (2014) Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J Hematol Oncol 7:30
CrossRef
Google scholar
|
[24] |
De Bundel D, Schallier A, Loyens E, Fernando R, Miyashita H, Van Liefferinge J, Vermoesen K, Bannai S, Sato H, Michotte Y
CrossRef
Google scholar
|
[25] |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS
CrossRef
Google scholar
|
[26] |
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS
CrossRef
Google scholar
|
[27] |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J,Aichler M , Walch A
CrossRef
Google scholar
|
[28] |
Dornier E,Rabas N, Mitchell L, Novo D, Dhayade S, Marco S, Mackay G, Sumpton D,Pallares M, Nixon C
CrossRef
Google scholar
|
[29] |
Drayton RM, Dudziec E, Peter S, Bertz S, Hartmann A, Bryant HE, Catto JW (2014) Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res 20:1990–2000
CrossRef
Google scholar
|
[30] |
Eagle H (1955a) Nutrition needs of mammalian cells in tissue culture. Science 122:501–514
CrossRef
Google scholar
|
[31] |
Eagle H (1955b) The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture. J Exp Med 102:37–48
CrossRef
Google scholar
|
[32] |
Feng H, Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16:e2006203
CrossRef
Google scholar
|
[33] |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A,Eggenhofer E
CrossRef
Google scholar
|
[34] |
Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, Chen PH, Boroughs LK, Rodriguez MLM, Zhang W
CrossRef
Google scholar
|
[35] |
Gan B (2019) DUBbing ferroptosis in cancer cells. Cancer Res 79:1749–1750
CrossRef
Google scholar
|
[36] |
Gan W, Dai X, Dai X, Xie J, Yin S, Zhu J, Wang C, Liu Y, Guo J, Wang M
CrossRef
Google scholar
|
[37] |
Goji T, Takahara K, Negishi M, Katoh H (2017) Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation. J Biol Chem 292:19721–19732
CrossRef
Google scholar
|
[38] |
Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30
CrossRef
Google scholar
|
[39] |
Gu Y,Albuquerque CP, Braas D, Zhang W, Villa GR, Bi J, Ikegami S, Masui K, Gini B, Yang H
CrossRef
Google scholar
|
[40] |
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
CrossRef
Google scholar
|
[41] |
Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663
CrossRef
Google scholar
|
[42] |
Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123:3678–3684
CrossRef
Google scholar
|
[43] |
Hu K, Li K, Lv J, Feng J, Chen J, Wu H, Cheng F,Jiang W, Wang J, Pei H
CrossRef
Google scholar
|
[44] |
Huang Y, Dai Z, Barbacioru C, Sadee W (2005) Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 65:7446–7454
CrossRef
Google scholar
|
[45] |
Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288
CrossRef
Google scholar
|
[46] |
Ishii T, Bannai S (1985) The synergistic action of the copper chelator bathocuproine sulphonate and cysteine in enhancing growth of L1210 cells in vitro. J Cell Physiol 125:151–155
CrossRef
Google scholar
|
[47] |
Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H
CrossRef
Google scholar
|
[48] |
Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254
CrossRef
Google scholar
|
[49] |
Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI, Khaku S,Scott JP, Cai KQ, Campbell MR, Porter DK
CrossRef
Google scholar
|
[50] |
Ji X, Qian J, Rahman SMJ, Siska PJ, Zou Y, Harris BK, Hoeksema MD, Trenary IA, Heidi C, Eisenberg R
CrossRef
Google scholar
|
[51] |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62
CrossRef
Google scholar
|
[52] |
Joly JH, Delfarah A, Phung PS, Parrish S, Graham NA (2020) A synthetic lethal drug combination mimics glucose deprivationinduced cancer cell death in the presence of glucose. J Biol Chem 295:1350–1365
CrossRef
Google scholar
|
[53] |
Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr, Vogelstein B
CrossRef
Google scholar
|
[54] |
Kadoch C, Crabtree GR (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv 1:e1500447
CrossRef
Google scholar
|
[55] |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB
CrossRef
Google scholar
|
[56] |
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA (2018) Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci 43:752–789
CrossRef
Google scholar
|
[57] |
Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20:436–443
CrossRef
Google scholar
|
[58] |
Kim J, Guan KL (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21:63–71
CrossRef
Google scholar
|
[59] |
Koppula P, Zhang Y, Shi J, Li W, Gan B (2017) The glutamate/ cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J Biol Chem 292:14240–14249
CrossRef
Google scholar
|
[60] |
Koppula P, Zhang Y, Zhuang L, Gan B(2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond) 38:12
CrossRef
Google scholar
|
[61] |
Lang X, Green MD, Wang W,Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A
CrossRef
Google scholar
|
[62] |
Lei G, Zhang Y, Koppula P,Liu X,Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H
CrossRef
Google scholar
|
[63] |
Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:1269–1283
CrossRef
Google scholar
|
[64] |
Lien EC, Ghisolfi L, Geck RC, Asara JM, Toker A (2017) Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci Signal 10: eaao6604
CrossRef
Google scholar
|
[65] |
Lim JKM, Delaidelli A, Minaker SW, Zhang HF, Colovic M, Yang H, Negri GL, von Karstedt S, Lockwood WW, Schaffer P
CrossRef
Google scholar
|
[66] |
Liu XX, Li XJ, Zhang B, Liang YJ, Zhou CX, Cao DX, He M, Chen GQ, He JR, Zhao Q (2011) MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett 585:1363–1367
CrossRef
Google scholar
|
[67] |
Liu DS, Duong CP, Haupt S, Montgomery KG, House CM, Azar WJ, Pearson HB, Fisher OM, Read M, Guerra GR
CrossRef
Google scholar
|
[68] |
Liu T, Jiang L, Tavana O, Gu W (2019) The Deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res 79:1913–1924
CrossRef
Google scholar
|
[69] |
Liu X, Olszewski K, Zhang Y, Lim EW, Shi J, Zhang X, Zhang J, Lee H, Koppula P, Lei G
CrossRef
Google scholar
|
[70] |
Lo M, Ling V, Wang YZ, Gout PW (2008) The xc- cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance . Br J Cancer 99:464–472
CrossRef
Google scholar
|
[71] |
Long Y, Tao H, Karachi A, Grippin AJ, Jin L, Chang YE, Zhang W, Dyson KA, Hou AY, Na M
CrossRef
Google scholar
|
[72] |
Mandal PK, Seiler A, Perisic T, Kolle P, Banjac Canak A, Forster H, Weiss N, Kremmer E, Lieberman MW, Bannai S
CrossRef
Google scholar
|
[73] |
Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405
CrossRef
Google scholar
|
[74] |
Mao TL, Shih Ie M (2013) The roles of ARID1A in gynecologic cancer. J Gynecol Oncol 24:376–381
CrossRef
Google scholar
|
[75] |
Martin L, Gardner LB (2015) Stress-induced inhibition of nonsensemediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11. Oncogene 34:4211–4218
CrossRef
Google scholar
|
[76] |
Muir A, Danai LV, Gui DY, Waingarten CY, Lewis CA, Vander Heiden MG (2017) Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife 6: e27713
CrossRef
Google scholar
|
[77] |
Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8
CrossRef
Google scholar
|
[78] |
Nagane M, Kanai E, Shibata Y, Shimizu T, Yoshioka C, Maruo T, Yamashita T (2018) Sulfasalazine, an inhibitor of the cystineglutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma. PLoS ONE 13: e0195151
CrossRef
Google scholar
|
[79] |
Nakamura E, Sato M, Yang H, Miyagawa F, Harasaki M, Tomita K, Matsuoka S, Noma A, Iwai K, Minato N (1999) 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 274:3009–3016
CrossRef
Google scholar
|
[80] |
Ogiwara H, Takahashi K, Sasaki M, Kuroda T, Yoshida H, Watanabe R, Maruyama A,Makinoshima H, Chiwaki F, Sasaki H
CrossRef
Google scholar
|
[81] |
Okuno S, Sato H, Kuriyama-Matsumura K, Tamba M, Wang H, Sohda S, Hamada H, Yoshikawa H, Kondo T,Bannai S (2003) Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br J Cancer 88:951–956
CrossRef
Google scholar
|
[82] |
Pader I, Sengupta R, Cebula M, Xu J, Lundberg JO, Holmgren A, Johansson K, Arner ES (2014) Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc Natl Acad Sci USA 111:6964–6969
CrossRef
Google scholar
|
[83] |
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17:1374–1395
CrossRef
Google scholar
|
[84] |
Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47
CrossRef
Google scholar
|
[85] |
Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467
CrossRef
Google scholar
|
[86] |
Qiao HX, Hao CJ, Li Y, He X, Chen RS, Cui J,Xu ZH, Li W (2008) JNK activation mediates the apoptosis of xCT-deficient cells. Biochem Biophys Res Commun 370:584–588
CrossRef
Google scholar
|
[87] |
Rojo de la Vega M, Chapman E,Zhang DD (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43
CrossRef
Google scholar
|
[88] |
Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, Karakousi TR, Ellis DC, Bhutkar A, Sanchez-Rivera FJ
CrossRef
Google scholar
|
[89] |
Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458
CrossRef
Google scholar
|
[90] |
Sato H, Nomura S, Maebara K, Sato K, Tamba M, Bannai S (2004) Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem Biophys Res Commun 325:109–116
CrossRef
Google scholar
|
[91] |
Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T
CrossRef
Google scholar
|
[92] |
Sayin VI, LeBoeuf SE, Singh SX, Davidson SM, Biancur D, Guzelhan BS, Alvarez SW, Wu WL, Karakousi TR, Zavitsanou AM
CrossRef
Google scholar
|
[93] |
Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Muller J(2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243–247
CrossRef
Google scholar
|
[94] |
Shi J, Vakoc CR (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54:728–736
CrossRef
Google scholar
|
[95] |
Shin CS, Mishra P, Watrous JD, Carelli V, D’Aurelio M, Jain M, Chan DC (2017) The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility. Nat Commun 8:15074
CrossRef
Google scholar
|
[96] |
Shin SS, Jeong BS, Wall BA, Li J,Shan NL, Wen Y, Goydos JS, Chen S (2018) Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis 7:86
CrossRef
Google scholar
|
[97] |
Stewart MD, Li J, Wong J (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25:2525–2538
CrossRef
Google scholar
|
[98] |
Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577
CrossRef
Google scholar
|
[99] |
Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136:1652S–1659S
CrossRef
Google scholar
|
[100] |
Stockwell BR, Jiang X (2020) The chemistry and biology of ferroptosis. Cell Chem Biol 27:365–375
CrossRef
Google scholar
|
[101] |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE
CrossRef
Google scholar
|
[102] |
Sui S, Zhang J, Xu S, Wang Q, Wang P, Pang D (2019) Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis 10:331
CrossRef
Google scholar
|
[103] |
Timmerman LA, Holton T, Yuneva M, Louie RJ, Padro M, Daemen A, Hu M, Chan DA, Ethier SP, van ‘t Veer LJ
CrossRef
Google scholar
|
[104] |
Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591
CrossRef
Google scholar
|
[105] |
Tsuchihashi K, Okazaki S, Ohmura M, Ishikawa M, Sampetrean O, Onishi N, Wakimoto H, Yoshikawa M, Seishima R, Iwasaki Y
CrossRef
Google scholar
|
[106] |
Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033
CrossRef
Google scholar
|
[107] |
Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431
CrossRef
Google scholar
|
[108] |
Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878
CrossRef
Google scholar
|
[109] |
Wang SJ, Li D, Ou Y, Jiang L, Chen Y, Zhao Y, Gu W (2016) Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 17:366–373
CrossRef
Google scholar
|
[110] |
Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song JY, Zevenhoven J, Los-de Vries GT
CrossRef
Google scholar
|
[111] |
Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A
CrossRef
Google scholar
|
[112] |
Wang Y, Yang L, Zhang X, Cui W,Liu Y, Sun QR, He Q, Zhao S, Zhang GA, Wang Y
CrossRef
Google scholar
|
[113] |
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X
CrossRef
Google scholar
|
[114] |
Wang Y, Zhao Y, Wang H, Zhang C, Wang M, Yang Y,Xu X , Hu Z (2020b) Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Biol 10:637–643
CrossRef
Google scholar
|
[115] |
Wu Y, Sun X, Song B, Qiu X, Zhao J(2017) MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Med 6:1686–1697
CrossRef
Google scholar
|
[116] |
Xie L, Song X, Yu J, Guo W, Wei L, Liu Y, Wang X (2011) Solute carrier protein family may involve in radiation-induced radioresistance of non-small cell lung cancer. J Cancer Res Clin Oncol 137:1739–1747
CrossRef
Google scholar
|
[117] |
Yae T, Tsuchihashi K, Ishimoto T, Motohara T, Yoshikawa M, Yoshida GJ, Wada T, Masuko T, Mogushi K, Tanaka H
CrossRef
Google scholar
|
[118] |
Yamaguchi I, Yoshimura SH, Katoh H (2020) High cell density increases glioblastoma cell viability under glucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11). J Biol Chem 295:6936–6945
CrossRef
Google scholar
|
[119] |
Yang Y, Yee D (2014) IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC . Cancer Res 74:2295–2305
CrossRef
Google scholar
|
[120] |
Yang WS, SriRamaratnam R,Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB
CrossRef
Google scholar
|
[121] |
Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A, Prolla TA (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502
CrossRef
Google scholar
|
[122] |
Ye P, Mimura J, Okada T, Sato H, Liu T, Maruyama A, Ohyama C, Itoh K (2014) Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition. Mol Cell Biol 34:3421–3434
CrossRef
Google scholar
|
[123] |
Ye LF, Chaudhary KR, Zandkarimi F,Harken AD, Kinslow CJ, Upadhyayula PS, Dovas A, Higgins DM, Tan H, Zhang Y
CrossRef
Google scholar
|
[124] |
Yoshikawa M, Tsuchihashi K, Ishimoto T, Yae T, Motohara T, Sugihara E, Onishi N, Masuko T, Yoshizawa K, Kawashiri S
CrossRef
Google scholar
|
[125] |
Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C, Lu W, Burger JA, Croce CM, Plunkett W
CrossRef
Google scholar
|
[126] |
Zhang L,Huang Y, Ling J, Zhuo W, Yu Z,Luo Y, Zhu Y (2018a) Overexpression of SLC7A11: a novel oncogene and an indicator of unfavorable prognosis for liver carcinoma. Fut Oncol 14:927–936
CrossRef
Google scholar
|
[127] |
Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, Sirohi K, Li X,Wei Y, Lee H
CrossRef
Google scholar
|
[128] |
Zhang Y, Koppula P, Gan B (2019a) Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle 18:773–783
CrossRef
Google scholar
|
[129] |
Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, Uchida K, O’Connor OA, Stockwell BR (2019b) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 226:623
CrossRef
Google scholar
|
[130] |
Zhang Y,Zhuang L, Gan B (2019c) BAP1 suppresses tumor development by inducing ferroptosis upon SLC7A11 repression. Mol Cell Oncol 6:1536845
CrossRef
Google scholar
|
/
〈 | 〉 |