The two-stage interaction of Ebola virus VP40 with nucleoprotein results in a switch from viral RNA synthesis to virion assembly/budding
Linjuan Wu, Dongning Jin, Dan Wang, Xuping Jing, Peng Gong, Yali Qin, Mingzhou Chen
The two-stage interaction of Ebola virus VP40 with nucleoprotein results in a switch from viral RNA synthesis to virion assembly/budding
Ebola virus (EBOV) is an enveloped negative-sense RNA virus and a member of the filovirus family. Nucleoprotein (NP) expression alone leads to the formation of inclusion bodies (IBs), which are critical for viral RNA synthesis. The matrix protein, VP40, not only plays a critical role in virus assembly/budding, but also can regulate transcription and replication of the viral genome. However, the molecular mechanism by which VP40 regulates viral RNA synthesis and virion assembly/budding is unknown. Here, we show that within IBs the N-terminus of NP recruits VP40 and is required for VLP-containing NP release. Furthermore, we find four point mutations (L692A, P697A, P698A and W699A) within the C-terminal hydrophobic core of NP result in a stronger VP40–NP interaction within IBs, sequestering VP40 within IBs, reducing VP40–VLP egress, abolishing the incorporation of NC-like structures into VP40–VLP, and inhibiting viral RNA synthesis, suggesting that the interaction of N-terminus of NP with VP40 induces a conformational change in the C-terminus of NP. Consequently, the C-terminal hydrophobic core of NP is exposed and binds VP40, thereby inhibiting RNA synthesis and initiating virion assembly/budding.
Ebola virus / nucleoprotein / matrix protein / two-stage interaction / RNA synthesis / nucleocapsid / assembly/budding
[1] |
Aruna A, Mbala P, Minikulu L, Mukadi D, Bulemfu D, Edidi F, Bulabula J, Tshapenda G, Nsio J, Kitenge R
CrossRef
Google scholar
|
[2] |
Batra J, Hultquist JF, Liu D, Shtanko O, Von Dollen J, Satkamp L, Jang GM, Luthra P, Schwarz TM, Small GI
CrossRef
Google scholar
|
[3] |
Bharat TA, Noda T, Riches JD, Kraehling V, Kolesnikova L, Becker S, Kawaoka Y,Briggs JA (2012) Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc Natl Acad Sci USA 109:4275–4280
CrossRef
Google scholar
|
[4] |
Bornholdt ZA, Noda T, Abelson DM, Halfmann P, Wood MR, Kawaoka Y, Saphire EO (2013) Structural rearrangement of ebola virus VP40 begets multiple functions in the virus life cycle. Cell 154:763–774
CrossRef
Google scholar
|
[5] |
Buchholz CJ, Spehner D,Drillien R, Neubert WJ, Homann HE (1993) The conserved N-terminal region of Sendai virus nucleocapsid protein NP is required for nucleocapsid assembly. J Virol 67:5803–5812
CrossRef
Google scholar
|
[6] |
Coronel EC, Murti KG, Takimoto T,Portner A (1999) Human parainfluenza virus type 1 matrix and nucleoprotein genes transiently expressed in mammalian cells induce the release of virus-like particles containing nucleocapsid-like structures. J Virol 73:7035–7038
CrossRef
Google scholar
|
[7] |
Coronel EC, Takimoto T, Murti KG, Varich N, Portner A (2001) Nucleocapsid incorporation into parainfluenza virus is regulated by specific interaction with matrix protein. J Virol 75:1117–1123
CrossRef
Google scholar
|
[8] |
De BP, Thornton GB, Luk D, Banerjee AK (1982) Purified matrix protein of vesicular stomatitis virus blocks viral transcription in vitro . Proc Natl Acad Sci USA 79:7137–7141
CrossRef
Google scholar
|
[9] |
Dong S, Yang P, Li G, Liu B, Wang W, Liu X, Xia B, Yang C, Lou Z, Guo Y
CrossRef
Google scholar
|
[10] |
Dziubanska PJ, Derewenda U,Ellena JF, Engel DA, Derewenda ZS (2014) The structure of the C-terminal domain of the Zaire ebolavirus nucleoprotein. Acta Crystallogr D 70:2420–2429
CrossRef
Google scholar
|
[11] |
Garcia-Barreno B, Delgado T,Melero JA (1996) Identification of protein regions involved in the interaction of human respiratory syncytial virus phosphoprotein and nucleoprotein: significance for nucleocapsid assembly and formation of cytoplasmic inclusions . J Virol 70:801–808
CrossRef
Google scholar
|
[12] |
Groseth A, Charton JE, Sauerborn M, Feldmann F,Jones SM, Hoenen T,Feldmann H (2009) The Ebola virus ribonucleoprotein complex: a novel VP30-L interaction identified. Virus Res 140:8–14
CrossRef
Google scholar
|
[13] |
Hartlieb B, Muziol T, Weissenhorn W, Becker S (2007) Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. Proc Natl Acad Sci USA 104:624–629
CrossRef
Google scholar
|
[14] |
Hartman AL, Towner JS, Nichol ST (2010) Ebola and marburg hemorrhagic fever. Clin Lab Med 30:161–177
CrossRef
Google scholar
|
[15] |
Heinrich BS, Cureton DK, Rahmeh AA, Whelan SP (2010) Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 6:e1000958
CrossRef
Google scholar
|
[16] |
Hertz EPT, Kruse T, Davey NE, Lopez-Mendez B, Sigurethsson JO,Montoya G, Olsen JV, Nilsson J (2016) A conserved motif provides binding specificity to the PP2A-B56 phosphatase. Mol Cell 63:686–695
CrossRef
Google scholar
|
[17] |
Hoenen T, Jung S, Herwig A, Groseth A, Becker S (2010) Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology 403:56–66
CrossRef
Google scholar
|
[18] |
Hoenen T, Shabman RS, Groseth A, Herwig A, Weber M, Schudt G,Dolnik O, Basler CF, Becker S,Feldmann H (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86:11779–11788
CrossRef
Google scholar
|
[19] |
Hoenen T, Groseth A, Feldmann H(2019) Therapeutic strategies to target the Ebola virus life cycle. Nat Rev Microbiol 17:593–606
CrossRef
Google scholar
|
[20] |
Huang Y, Xu L, Sun Y, Nabel GJ (2002) The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 10:307–316
CrossRef
Google scholar
|
[21] |
Iwasaki M, Takeda M, Shirogane Y,Nakatsu Y, Nakamura T,Yanagi Y (2009) The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 83:10374–10383
CrossRef
Google scholar
|
[22] |
Jasenosky LD, Neumann G, Lukashevich I, Kawaoka Y (2001) Ebola virus VP40-induced particle formation and association with the lipid bilayer. J Virol 75:5205–5214
CrossRef
Google scholar
|
[23] |
Jasenosky LD, Neumann G, Kawaoka Y (2010) Minigenome-based reporter system suitable for high-throughput screening of compounds able to inhibit Ebolavirus replication and/or transcription. Antimicrob Agents Chemother 54:3007–3010
CrossRef
Google scholar
|
[24] |
Johnson RF, McCarthy SE, Godlewski PJ, Harty RN (2006) Ebola virus VP35-VP40 interaction is sufficient for packaging 3E-5E minigenome RNA into virus-like particles. J Virol 80:5135–5144
CrossRef
Google scholar
|
[25] |
Justice PA, Sun W, Li Y, Ye Z, Grigera PR, Wagner RR (1995) Membrane vesiculation function and exocytosis of wild-type and mutant matrix proteins of vesicular stomatitis virus. J Virol 69:3156–3160
CrossRef
Google scholar
|
[26] |
Kirchdoerfer RN, Abelson DM, Li S, Wood MR, Saphire EO (2015) Assembly of the ebola virus nucleoprotein from a chaperoned VP35 complex . Cell Rep 12:140–149
CrossRef
Google scholar
|
[27] |
Kirchdoerfer RN, Moyer CL, Abelson DM, Saphire EO (2016) The ebola virus VP30-NP interaction is a regulator of viral RNA synthesis. PLoS Pathog 12:e1005937
CrossRef
Google scholar
|
[28] |
Kirchdoerfer RN, Wasserman H, Amarasinghe GK, Saphire EO (2017) Filovirus structural biology: the molecules in the machine . Curr Top Microbiol Immunol 411:381–417
CrossRef
Google scholar
|
[29] |
Kruse T, Biedenkopf N, Hertz EPT, Dietzel E, Stalmann G,Lopez-Mendez B, Davey NE, Nilsson J, Becker S (2018) The ebola virus nucleoprotein recruits the host PP2A-B56 phosphatase to activate transcriptional support activity of VP30. Mol Cell 69(136–145):e136
CrossRef
Google scholar
|
[30] |
Leung DW, Borek D, Luthra P, Binning JM, Anantpadma M, Liu G,Harvey IB, Su Z, Endlich-Frazier A, Pan J
CrossRef
Google scholar
|
[31] |
Li Y, Luo L, Schubert M, Wagner RR, Kang CY (1993) Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. J Virol 67:4415–4420
CrossRef
Google scholar
|
[32] |
Li D, Jans DA, Bardin PG, Meanger J, Mills J, Ghildyal R(2008) Association of respiratory syncytial virus M protein with viral nucleocapsids is mediated by the M2-1 protein. J Virol 82:8863–8870
CrossRef
Google scholar
|
[33] |
Licata JM, Johnson RF, Han Z, Harty RN (2004) Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol 78:7344–7351
CrossRef
Google scholar
|
[34] |
Longhi S, Receveur-Brechot V, Karlin D, Johansson K, Darbon H, Bhella D, Yeo R, Finet S, Canard B (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278:18638–18648
CrossRef
Google scholar
|
[35] |
Martin B, Hoenen T, Canard B, Decroly E (2016) Filovirus proteins for antiviral drug discovery: a structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 135:1–14
CrossRef
Google scholar
|
[36] |
Messaoudi I,Amarasinghe GK, Basler CF (2015) Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. Nat Rev Microbiol 13:663–676
CrossRef
Google scholar
|
[37] |
Misasi J, Sullivan NJ (2014) Camouflage and misdirection: the fullon assault of Ebola virus disease. Cell 159:477–486
CrossRef
Google scholar
|
[38] |
Modrof J, Muhlberger E, Klenk HD, Becker S (2002) Phosphorylation of VP30 impairs ebola virus transcription. J Biol Chem 277:33099–33104
CrossRef
Google scholar
|
[39] |
Muhlberger E, Lotfering B, Klenk HD, Becker S(1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72:8756–8764
CrossRef
Google scholar
|
[40] |
Nanbo A, Watanabe S, Halfmann P, Kawaoka Y (2013) The spatiotemporal distribution dynamics of Ebola virus proteins and RNA in infected cells. Sci Rep 3:1206
CrossRef
Google scholar
|
[41] |
Negredo A, Palacios G, Vazquez-Moron S, Gonzalez F, Dopazo H, Molero F, Juste J, Quetglas J, Savji N, de la Cruz Martinez M
CrossRef
Google scholar
|
[42] |
Nelson EV, Schmidt KM, Deflube LR, Doganay S, Banadyga L, Olejnik J, Hume AJ, Ryabchikova E, Ebihara H, Kedersha N
CrossRef
Google scholar
|
[43] |
Noda T, Halfmann P, Sagara H, Kawaoka Y (2007a) Regions in Ebola virus VP24 that are important for nucleocapsid formation. J Infect Dis 196(Suppl 2):S247–250
CrossRef
Google scholar
|
[44] |
Noda T, Watanabe S, Sagara H, Kawaoka Y (2007b) Mapping of the VP40-binding regions of the nucleoprotein of Ebola virus . J Virol 81:3554–3562
CrossRef
Google scholar
|
[45] |
Noda T, Hagiwara K, Sagara H, Kawaoka Y (2010) Characterization of the Ebola virus nucleoprotein-RNA complex. J Gen Virol 91:1478–1483
CrossRef
Google scholar
|
[46] |
Noton SL, Simpson-Holley M, Medcalf E, Wise HM, Hutchinson EC, McCauley JW, Digard P (2009) Studies of an influenza A virus temperature-sensitive mutant identify a late role for NP in the formation of infectious virions. J Virol 83:562–571
CrossRef
Google scholar
|
[47] |
Patch JR, Crameri G, Wang LF, Eaton BT, Broder CC (2007) Quantitative analysis of Nipah virus proteins released as viruslike particles reveals central role for the matrix protein . Virol J 4:1
CrossRef
Google scholar
|
[48] |
Richard CA, Rincheval V, Lassoued S, Fix J, Cardone C, Esneau C, Nekhai S, Galloux M, Rameix-Welti MA, Sizun C
CrossRef
Google scholar
|
[49] |
Runkler N, Pohl C, Schneider-Schaulies S, Klenk H-D, Maisner A (2007) Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9:1203–1214
CrossRef
Google scholar
|
[50] |
Sakaguchi T, Uchiyama T, Fujii Y, Kiyotani K, Kato A, Nagai Y, Kawai A, Yoshida T (1999) Double-layered membrane vesicles released from mammalian cells infected with Sendai virus expressing the matrix protein of vesicular stomatitis virus. Virology 263:230–243
CrossRef
Google scholar
|
[51] |
Schmitt AP, Leser GP, Waning DL, Lamb RA (2002) Requirements for budding of paramyxovirus simian virus 5 virus-like particles. J Virol 76:3952–3964
CrossRef
Google scholar
|
[52] |
Schudt G,Dolnik O, Kolesnikova L, Biedenkopf N, Herwig A, Becker S (2015) Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolavirus-Infected Cells. J Infect Dis 212(Suppl 2):S160–166
CrossRef
Google scholar
|
[53] |
Shi W, Huang Y, Sutton-Smith M, Tissot B, Panico M, Morris HR, Dell A, Haslam SM, Boyington J, Graham BS
CrossRef
Google scholar
|
[54] |
Su Z, Wu C, Shi L,Luthra P, Pintilie GD, Johnson B, Porter JR, Ge P, Chen M, Liu G
CrossRef
Google scholar
|
[55] |
Sugahara F,Uchiyama T, Watanabe H, Shimazu Y, Kuwayama M, Fujii Y, Kiyotani K, Adachi A, Kohno N, Yoshida T
CrossRef
Google scholar
|
[56] |
Sugita Y,Matsunami H, Kawaoka Y, Noda T,Wolf M (2018) Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 A resolution. Nature 563:137–140
CrossRef
Google scholar
|
[57] |
Takamatsu Y, Kolesnikova L, Becker S (2018) Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc Natl Acad Sci USA 115:1075–1080
CrossRef
Google scholar
|
[58] |
Timmins J, Scianimanico S, Schoehn G, Weissenhorn W (2001) Vesicular release of ebola virus matrix protein VP40 . Virology 283:1–6
CrossRef
Google scholar
|
[59] |
Trunschke M, Conrad D, Enterlein S, Olejnik J,Brauburger K, Muhlberger E (2013) The L-VP35 and L–L interaction domains reside in the amino terminus of the Ebola virus L protein and are potential targets for antivirals. Virology 441:135–145
CrossRef
Google scholar
|
[60] |
Vetter P, Fischer WA 2nd, Schibler M, Jacobs M, Bausch DG, Kaiser L(2016) Ebola virus shedding and transmission: review of current evidence. J Infect Dis 214:S177–S184
CrossRef
Google scholar
|
[61] |
Watanabe S, Noda T, Kawaoka Y (2006) Functional mapping of the nucleoprotein of Ebola virus. J Virol 80:3743–3751
CrossRef
Google scholar
|
[62] |
Weik M, Modrof J, Klenk HD, Becker S, Muhlberger E (2002) Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation. J Virol 76:8532–8539
CrossRef
Google scholar
|
[63] |
Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi Y (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127:1239–1251
CrossRef
Google scholar
|
[64] |
Xu W, Luthra P, Wu C, Batra J, Leung DW, Basler CF, Amarasinghe GK (2017) Ebola virus VP30 and nucleoprotein interactions modulate viral RNA synthesis. Nat Commun 8:15576
CrossRef
Google scholar
|
[65] |
Yamayoshi S, Noda T, Ebihara H, Goto H, Morikawa Y,Lukashevich IS, Neumann G, Feldmann H, Kawaoka Y (2008) Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport . Cell Host Microbe 3:168–177
CrossRef
Google scholar
|
[66] |
Yang XL, Tan CW, Anderson DE, Jiang RD, Li B, Zhang W, Zhu Y, Lim XF, Zhou P, Liu XL
CrossRef
Google scholar
|
[67] |
Zhang S, Chen L, Zhang G, Yan Q, Yang X, Ding B, Tang Q, Sun S, Hu Z, Chen M (2013) An amino acid of human parainfluenza virus type 3 nucleoprotein is critical for template function and cytoplasmic inclusion body formation. J Virol 87:12457–12470
CrossRef
Google scholar
|
[68] |
Zhang G, Zhang S, Ding B, Yang X, Chen L, Yan Q, Jiang Y, Zhong Y, Chen M (2014) A leucine residue in the C terminus of human parainfluenza virus type 3 matrix protein is essential for efficient virus-like particle and virion release. J Virol 88:13173–13188
CrossRef
Google scholar
|
[69] |
Zhang G, Zhong Y, Qin Y, Chen M (2015) Interaction of human parainfluenza virus type 3 nucleoprotein with matrix protein mediates internal viral protein assembly. J Virol 90:2306–2315
CrossRef
Google scholar
|
[70] |
Zhang S, Jiang Y, Cheng Q, Zhong Y,Qin Y, Chen M (2017) Inclusion body fusion of human parainfluenza virus type 3 regulated by acetylated alpha-tubulin enhances viral replication. J Virol 91:e01802
CrossRef
Google scholar
|
[71] |
Zhang S, Cheng Q, Luo C, Qin Y,Chen M (2018) Human parainfluenza virus type 3 matrix protein reduces viral RNA synthesis of HPIV3 by regulating inclusion body formation. Viruses 10:125
CrossRef
Google scholar
|
/
〈 | 〉 |