Cellular metabolism and homeostasis in pluripotency regulation
Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao
Cellular metabolism and homeostasis in pluripotency regulation
Pluripotent stem cells (PSCs) can immortally self-renew in culture with a high proliferation rate, and they possess unique metabolic characteristics that facilitate pluripotency regulation. Here, we review recent progress in understanding the mechanisms that link cellular metabolism and homeostasis to pluripotency regulation, with particular emphasis on pathways involving amino acid metabolism, lipid metabolism, the ubiquitin-proteasome system and autophagy. Metabolism of amino acids and lipids is tightly coupled to epigenetic modification, organelle remodeling and cell signaling pathways for pluripotency regulation. PSCs harness enhanced proteasome and autophagy activity to meet the material and energy requirements for cellular homeostasis. These regulatory events reflect a fine balance between the intrinsic cellular requirements and the extrinsic environment. A more complete understanding of this balance will pave new ways to manipulate PSC fate.
autophagy / amino acid metabolism / lipidmetabolism / pluripotent stem cell (PSC) / ubiquitinproteasome system (UPS)
[1] |
Alexander PB, Wang J, McKnight SL (2011) Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc Natl Acad Sci USA 108:15828–15833
CrossRef
Google scholar
|
[2] |
Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B
CrossRef
Google scholar
|
[3] |
Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20:391–401
CrossRef
Google scholar
|
[4] |
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG
CrossRef
Google scholar
|
[5] |
Buck MD, O’Sullivan D, Geltink RIK, Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der Windt GJW
CrossRef
Google scholar
|
[6] |
Buckley SM, Aranda-Orgilles B, Strikoudis A, Apostolou E, Loizou E, Moran-Crusio K, Farnsworth CL, Koller AA, Dasgupta R, Silva JC
CrossRef
Google scholar
|
[7] |
Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–416
CrossRef
Google scholar
|
[8] |
Casalino L, Comes S, Lambazzi G, De Stefano B, Filosa S, De Falco S, De Cesare D, Minchiotti G, Patriarca EJ (2011) Control of embryonic stem cell metastability by L-proline catabolism. J Mol Cell Biol 3:108–122
CrossRef
Google scholar
|
[9] |
Chandrasekaran AP, Suresh B, Kim HH, Kim KS, Ramakrishna S (2017) Concise review: fate determination of stem cells by deubiquitinating enzymes. Stem Cells (Dayton, Ohio) 35:9–16
CrossRef
Google scholar
|
[10] |
Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, Long Y, Zhao J, Pei G (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911
CrossRef
Google scholar
|
[11] |
Cho YH, Han KM, Kim D, Lee J, Lee SH, Choi KW, Kim J, Han YM (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells (Dayton, Ohio) 32:424–435
CrossRef
Google scholar
|
[12] |
Comes S, Gagliardi M, Laprano N, Fico A, Cimmino A, Palamidessi A, De Cesare D, De Falco S, Angelini C, Scita G
CrossRef
Google scholar
|
[13] |
Cornacchia D, Zhang C, Zimmer B, Chung SY, Fan Y, Soliman MA, Tchieu J, Chambers SM, Shah H, Paull D
CrossRef
Google scholar
|
[14] |
D’Aniello C, Cermola F, Palamidessi A, Wanderlingh LG, Gagliardi M, Migliaccio A, Varrone F, Casalino L, Matarazzo MR, De Cesare D
CrossRef
Google scholar
|
[15] |
D’Aniello C, Fico A, Casalino L, Guardiola O, Di Napoli G, Cermola F, De Cesare D, Tate R, Cobellis G, Patriarca EJ
CrossRef
Google scholar
|
[16] |
D’Aniello C, Habibi E, Cermola F, Paris D, Russo F, Fiorenzano A, Di Napoli G, Melck DJ, Cobellis G, Angelini C
CrossRef
Google scholar
|
[17] |
Dikic I (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86:193–224
CrossRef
Google scholar
|
[18] |
Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL (2010) Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 83:909–918
CrossRef
Google scholar
|
[19] |
Edgar AJ (2002) The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet 3:18
CrossRef
Google scholar
|
[20] |
Fang L, Zhang L, Wei W, Jin X, Wang P, Tong Y, Li J, Du JX, Wong J (2014) A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell 55:537–551
CrossRef
Google scholar
|
[21] |
Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513
CrossRef
Google scholar
|
[22] |
Folmes CD, Dzeja PP, Nelson TJ, Terzic A (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606
CrossRef
Google scholar
|
[23] |
Gao J, Buckley SM, Cimmino L, Guillamot M, Strikoudis A, Cang Y, Goff SP, Aifantis I (2015) The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. eLife 4:e07539
CrossRef
Google scholar
|
[24] |
Garcia-Gonzalo FR, Izpisua Belmonte JC (2008) Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS ONE 3:e1384
CrossRef
Google scholar
|
[25] |
Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SP
CrossRef
Google scholar
|
[26] |
Gong J, Gu H, Zhao L, Wang L, Liu P, Wang F, Xu H, Zhao T (2018) Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency. Cell Death Dis 9:38
CrossRef
Google scholar
|
[27] |
Gontan C, Achame EM, Demmers J, Barakat TS, Rentmeester E, Grootegoed JA, Gribnau J (2012) RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485:386–390
CrossRef
Google scholar
|
[28] |
Gu H, Shi X, Liu C, Wang C, Sui N, Zhao Y, Gong J, Wang F, Zhang H, Li W
CrossRef
Google scholar
|
[29] |
Gwatkin RBL (1966) Amino acid requirements for attachment and outgrowth of the mouse blastocyst in vitro. J Cell Physiol 68:335–343
CrossRef
Google scholar
|
[30] |
Han C, Gu H, Wang J, Lu W, Mei Y, Wu M (2013) Regulation of L-threonine dehydrogenase in somatic cell reprogramming. Stem Cells (Dayton, Ohio) 31:953–965
CrossRef
Google scholar
|
[31] |
Hwang IY, Kwak S, Lee S, Kim H, Lee SE, Kim JH, Kim YA, Jeon YK, Chung DH, Jin X
CrossRef
Google scholar
|
[32] |
Jian R, Cheng X, Jiang J, Deng S, Hu F, Zhang J (2007) A cDNAbased random RNA interference library for functional genetic screens in embryonic stem cells. Stem Cells (Dayton, Ohio) 25:1904–1912
CrossRef
Google scholar
|
[33] |
Jin J, Liu J, Chen C, Liu Z, Jiang C, Chu H, Pan W, Wang X, Zhang L, Li B
CrossRef
Google scholar
|
[34] |
Jonkers I, Barakat TS, Achame EM, Monkhorst K, Kenter A, Rentmeester E, Grosveld F, Grootegoed JA, Gribnau J (2009) RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139:999–1011
CrossRef
Google scholar
|
[35] |
Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472
CrossRef
Google scholar
|
[36] |
Kilberg MS, Terada N, Shan J (2016) Influence of amino acid metabolism on embryonic stem cell function and differentiation. Adv Nutr (Bethesda, Md) 7:780S–789S
CrossRef
Google scholar
|
[37] |
Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721
CrossRef
Google scholar
|
[38] |
Kwon SK, Lee DH, Kim SY, Park JH, Choi J, Baek KH (2017) Ubiquitin-specific protease 21 regulating the K48-linked polyubiquitination of NANOG. Biochem Biophys Res Commun 482:1443–1448
CrossRef
Google scholar
|
[39] |
Li S, Xiao F, Zhang J, Sun X, Wang H, Zeng Y, Hu J, Tang F, Gu J, Zhao Y
CrossRef
Google scholar
|
[40] |
Liu K, Song Y, Yu H, Zhao T (2014) Understanding the roadmaps to induced pluripotency. Cell Death Dis 5:e1232
CrossRef
Google scholar
|
[41] |
Liu K, Zhao Q, Liu P, Cao J, Gong J, Wang C, Wang W, Li X, Sun H, Zhang C
CrossRef
Google scholar
|
[42] |
Liu P, Liu K, Gu H, Wang W, Gong J, Zhu Y, Zhao Q, Cao J, Han C, Gao F
CrossRef
Google scholar
|
[43] |
Liu X, Yao Y, Ding H, Han C, Chen Y, Zhang Y, Wang C, Zhang X, Zhang Y, Zhai Y
CrossRef
Google scholar
|
[44] |
Ma T, Li J, Xu Y, Yu C, Xu T, Wang H, Liu K, Cao N, Nie BM, Zhu SY
CrossRef
Google scholar
|
[45] |
Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675
CrossRef
Google scholar
|
[46] |
Mathieu J, Ruohola-Baker H (2017) Metabolic remodeling during the loss and acquisition of pluripotency. Development 144:541–551
CrossRef
Google scholar
|
[47] |
Mayer RJ (2000) The meteoric rise of regulated intracellular proteolysis. Nat Rev Mol Cell Biol 1:145–148
CrossRef
Google scholar
|
[48] |
Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle (Georgetown, Tex) 10:3658–3677
CrossRef
Google scholar
|
[49] |
Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668
CrossRef
Google scholar
|
[50] |
Moretto-Zita M, Jin H, Shen Z, Zhao T, Briggs SP, Xu Y (2010) Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci USA 107:13312–13317
CrossRef
Google scholar
|
[51] |
Naujokat C, Saric T (2007) Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells (Dayton, Ohio) 25:2408–2418
CrossRef
Google scholar
|
[52] |
Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145:835–850
CrossRef
Google scholar
|
[53] |
Ramakrishna S, Suresh B, Lim KH, Cha BH, Lee SH, Kim KS, Baek KH (2011) PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev 20:1511–1519
CrossRef
Google scholar
|
[54] |
Ryu JM, Han HJ (2011) L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J Biol Chem 286:23667–23678
CrossRef
Google scholar
|
[55] |
Schultz GA, Kaye PL, McKay DJ, Johnson MH (1981) Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J Reprod Fertil 61:387–393
CrossRef
Google scholar
|
[56] |
Sellens MH, Stein S, Sherman MI (1981) Protein and free amino acid content in preimplantation mouse embryos and in blastocysts under various culture conditions. J Reprod Fertil 61:307–315
CrossRef
Google scholar
|
[57] |
Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G, Aburatani H, Kume K, Endo F, Kume S (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19:780–794
CrossRef
Google scholar
|
[58] |
Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer JJ, Zhu H
CrossRef
Google scholar
|
[59] |
Singh AM, Dalton S (2009) The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5:141–149
CrossRef
Google scholar
|
[60] |
Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H
CrossRef
Google scholar
|
[61] |
Spindle AI, Pedersen RA (1973) Hatching, attachment, and outgrowth of mouse blastocysts in vitro: fixed nitrogen requirements. J Exp Zool 186:305–318
CrossRef
Google scholar
|
[62] |
Szutorisz H, Georgiou A, Tora L, Dillon N (2006) The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 127:1375–1388
CrossRef
Google scholar
|
[63] |
Tang S, Fang Y, Huang G, Xu X, Padilla-Banks E, Fan W, Xu Q, Sanderson SM, Foley JF, Dowdy S
CrossRef
Google scholar
|
[64] |
Van Winkle LJ (2001) Amino acid transport regulation and early embryo development. Biol Reprod 64:1–12
CrossRef
Google scholar
|
[65] |
Vessoni AT, Muotri AR, Okamoto OK (2012) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21:513–520
CrossRef
Google scholar
|
[66] |
Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, Spencer B, Page L, Masliah E, Berggren WT
CrossRef
Google scholar
|
[67] |
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325:435–439
CrossRef
Google scholar
|
[68] |
Wang J, Zhang Y, Hou J, Qian X, Zhang H, Zhang Z, Li M, Wang R, Liao K, Wang Y
CrossRef
Google scholar
|
[69] |
Wang L, Zhang T, Wang L, Cai Y, Zhong X, He X, Hu L, Tian S, Wu M, Hui L
CrossRef
Google scholar
|
[70] |
Wang S, Xia P, Ye B, Huang G, Liu J, Fan Z (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13:617–625
CrossRef
Google scholar
|
[71] |
Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G
CrossRef
Google scholar
|
[72] |
Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1S transition and promote rapid proliferation. Nat Genet 40:1478–1483
CrossRef
Google scholar
|
[73] |
Washington JM, Rathjen J, Felquer F, Lonic A, Bettess MD, Hamra N, Semendric L, Tan BS, Lake JA, Keough RA
CrossRef
Google scholar
|
[74] |
Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178
CrossRef
Google scholar
|
[75] |
Wu Y, Li Y, Zhang H, Huang Y, Zhao P, Tang Y, Qiu X, Ying Y, Li W, Ni S
CrossRef
Google scholar
|
[76] |
Xiang G, Yang L, Long Q, Chen K, Tang H, Wu Y, Liu Z, Zhou Y, Qi J, Zheng L
CrossRef
Google scholar
|
[77] |
Xu H, Wang W, Li C, Yu H, Yang A, Wang B, Jin Y (2009) WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res 19:561–573
CrossRef
Google scholar
|
[78] |
Xu HM, Liao B, Zhang QJ, Wang BB, Li H, Zhong XM, Sheng HZ, Zhao YX, Zhao YM, Jin Y (2004) Wwp2, an E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination. J Biol Chem 279:23495–23503
CrossRef
Google scholar
|
[79] |
Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18:325–332
CrossRef
Google scholar
|
[80] |
Yanes O, Clark J, Wong DM, Patti GJ, Sanchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G (2010) Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 6:411–417
CrossRef
Google scholar
|
[81] |
Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z
CrossRef
Google scholar
|
[82] |
Zhang H, Badur MG, Divakaruni AS, Parker SJ, Jager C, Hiller K, Murphy AN, Metallo CM (2016a) Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions. Cell Rep 16:1536–1547
CrossRef
Google scholar
|
[83] |
Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D’Amico D, Ropelle ER, Lutolf MP, Aebersold R
CrossRef
Google scholar
|
[84] |
Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11:589–595
CrossRef
Google scholar
|
[85] |
Zhang J, Zhao J, Dahan P, Lu V, Zhang C, Li H, Teitell MA (2018) Metabolism in pluripotent stem cells and early mammalian development. Cell Metab 27:332–338
CrossRef
Google scholar
|
[86] |
Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, Ma L, Hamm M, Gage FH, Hunter T (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Life 5:e13374
CrossRef
Google scholar
|
/
〈 | 〉 |