Cellular metabolism and homeostasis in pluripotency regulation

Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao

PDF(498 KB)
PDF(498 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (9) : 630-640. DOI: 10.1007/s13238-020-00755-1
REVIEW

Cellular metabolism and homeostasis in pluripotency regulation

Author information +
History +

Abstract

Pluripotent stem cells (PSCs) can immortally self-renew in culture with a high proliferation rate, and they possess unique metabolic characteristics that facilitate pluripotency regulation. Here, we review recent progress in understanding the mechanisms that link cellular metabolism and homeostasis to pluripotency regulation, with particular emphasis on pathways involving amino acid metabolism, lipid metabolism, the ubiquitin-proteasome system and autophagy. Metabolism of amino acids and lipids is tightly coupled to epigenetic modification, organelle remodeling and cell signaling pathways for pluripotency regulation. PSCs harness enhanced proteasome and autophagy activity to meet the material and energy requirements for cellular homeostasis. These regulatory events reflect a fine balance between the intrinsic cellular requirements and the extrinsic environment. A more complete understanding of this balance will pave new ways to manipulate PSC fate.

Keywords

autophagy / amino acid metabolism / lipidmetabolism / pluripotent stem cell (PSC) / ubiquitinproteasome system (UPS)

Cite this article

Download citation ▾
Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation. Protein Cell, 2020, 11(9): 630‒640 https://doi.org/10.1007/s13238-020-00755-1

References

[1]
Alexander PB, Wang J, McKnight SL (2011) Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc Natl Acad Sci USA 108:15828–15833
CrossRef Google scholar
[2]
Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145:183–197
CrossRef Google scholar
[3]
Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20:391–401
CrossRef Google scholar
[4]
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956
CrossRef Google scholar
[5]
Buck MD, O’Sullivan D, Geltink RIK, Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der Windt GJW (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166:63–76
CrossRef Google scholar
[6]
Buckley SM, Aranda-Orgilles B, Strikoudis A, Apostolou E, Loizou E, Moran-Crusio K, Farnsworth CL, Koller AA, Dasgupta R, Silva JC (2012) Regulation of pluripotency and cellular reprogram ming by the ubiquitin-proteasome system. Cell Stem Cell 11:783–798
CrossRef Google scholar
[7]
Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–416
CrossRef Google scholar
[8]
Casalino L, Comes S, Lambazzi G, De Stefano B, Filosa S, De Falco S, De Cesare D, Minchiotti G, Patriarca EJ (2011) Control of embryonic stem cell metastability by L-proline catabolism. J Mol Cell Biol 3:108–122
CrossRef Google scholar
[9]
Chandrasekaran AP, Suresh B, Kim HH, Kim KS, Ramakrishna S (2017) Concise review: fate determination of stem cells by deubiquitinating enzymes. Stem Cells (Dayton, Ohio) 35:9–16
CrossRef Google scholar
[10]
Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, Long Y, Zhao J, Pei G (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911
CrossRef Google scholar
[11]
Cho YH, Han KM, Kim D, Lee J, Lee SH, Choi KW, Kim J, Han YM (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells (Dayton, Ohio) 32:424–435
CrossRef Google scholar
[12]
Comes S, Gagliardi M, Laprano N, Fico A, Cimmino A, Palamidessi A, De Cesare D, De Falco S, Angelini C, Scita G (2013) L-Proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation. Stem Cell Rep 1:307–321
CrossRef Google scholar
[13]
Cornacchia D, Zhang C, Zimmer B, Chung SY, Fan Y, Soliman MA, Tchieu J, Chambers SM, Shah H, Paull D (2019) Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs. Cell Stem Cell 25:120–136
CrossRef Google scholar
[14]
D’Aniello C, Cermola F, Palamidessi A, Wanderlingh LG, Gagliardi M, Migliaccio A, Varrone F, Casalino L, Matarazzo MR, De Cesare D (2019) Collagen prolyl hydroxylation-dependent metabolic perturbation governs epigenetic remodeling and mesenchymal transition in pluripotent and cancer cells. Cancer Res 79:3235–3250
CrossRef Google scholar
[15]
D’Aniello C, Fico A, Casalino L, Guardiola O, Di Napoli G, Cermola F, De Cesare D, Tate R, Cobellis G, Patriarca EJ (2015) A novel autoregulatory loop between the Gcn2-Atf4 pathway and (L)-Proline [corrected] metabolism controls stem cell identity. Cell Death Differ 22:1094–1105
CrossRef Google scholar
[16]
D’Aniello C, Habibi E, Cermola F, Paris D, Russo F, Fiorenzano A, Di Napoli G, Melck DJ, Cobellis G, Angelini C (2017) Vitamin C and l-proline antagonistic effects capture alternative states in the pluripotency continuum. Stem Cell Rep 8:1–10
CrossRef Google scholar
[17]
Dikic I (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86:193–224
CrossRef Google scholar
[18]
Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL (2010) Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 83:909–918
CrossRef Google scholar
[19]
Edgar AJ (2002) The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet 3:18
CrossRef Google scholar
[20]
Fang L, Zhang L, Wei W, Jin X, Wang P, Tong Y, Li J, Du JX, Wong J (2014) A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell 55:537–551
CrossRef Google scholar
[21]
Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513
CrossRef Google scholar
[22]
Folmes CD, Dzeja PP, Nelson TJ, Terzic A (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606
CrossRef Google scholar
[23]
Gao J, Buckley SM, Cimmino L, Guillamot M, Strikoudis A, Cang Y, Goff SP, Aifantis I (2015) The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. eLife 4:e07539
CrossRef Google scholar
[24]
Garcia-Gonzalo FR, Izpisua Belmonte JC (2008) Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS ONE 3:e1384
CrossRef Google scholar
[25]
Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SP (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18:396–409
CrossRef Google scholar
[26]
Gong J, Gu H, Zhao L, Wang L, Liu P, Wang F, Xu H, Zhao T (2018) Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency. Cell Death Dis 9:38
CrossRef Google scholar
[27]
Gontan C, Achame EM, Demmers J, Barakat TS, Rentmeester E, Grootegoed JA, Gribnau J (2012) RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485:386–390
CrossRef Google scholar
[28]
Gu H, Shi X, Liu C, Wang C, Sui N, Zhao Y, Gong J, Wang F, Zhang H, Li W (2019) USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5. Nat Commun 10:1465
CrossRef Google scholar
[29]
Gwatkin RBL (1966) Amino acid requirements for attachment and outgrowth of the mouse blastocyst in vitro. J Cell Physiol 68:335–343
CrossRef Google scholar
[30]
Han C, Gu H, Wang J, Lu W, Mei Y, Wu M (2013) Regulation of L-threonine dehydrogenase in somatic cell reprogramming. Stem Cells (Dayton, Ohio) 31:953–965
CrossRef Google scholar
[31]
Hwang IY, Kwak S, Lee S, Kim H, Lee SE, Kim JH, Kim YA, Jeon YK, Chung DH, Jin X (2016) Psat1-dependent fluctuations in alpha-ketoglutarate affect the timing of ESC differentiation. Cell Metab 24:494–501
CrossRef Google scholar
[32]
Jian R, Cheng X, Jiang J, Deng S, Hu F, Zhang J (2007) A cDNAbased random RNA interference library for functional genetic screens in embryonic stem cells. Stem Cells (Dayton, Ohio) 25:1904–1912
CrossRef Google scholar
[33]
Jin J, Liu J, Chen C, Liu Z, Jiang C, Chu H, Pan W, Wang X, Zhang L, Li B (2016) The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat Commun 7:13594
CrossRef Google scholar
[34]
Jonkers I, Barakat TS, Achame EM, Monkhorst K, Kenter A, Rentmeester E, Grosveld F, Grootegoed JA, Gribnau J (2009) RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139:999–1011
CrossRef Google scholar
[35]
Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472
CrossRef Google scholar
[36]
Kilberg MS, Terada N, Shan J (2016) Influence of amino acid metabolism on embryonic stem cell function and differentiation. Adv Nutr (Bethesda, Md) 7:780S–789S
CrossRef Google scholar
[37]
Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721
CrossRef Google scholar
[38]
Kwon SK, Lee DH, Kim SY, Park JH, Choi J, Baek KH (2017) Ubiquitin-specific protease 21 regulating the K48-linked polyubiquitination of NANOG. Biochem Biophys Res Commun 482:1443–1448
CrossRef Google scholar
[39]
Li S, Xiao F, Zhang J, Sun X, Wang H, Zeng Y, Hu J, Tang F, Gu J, Zhao Y (2018) Disruption of OCT4 ubiquitination increases OCT4 protein stability and ASH2L-B-mediated H3K4 methylation promoting pluripotency acquisition. Stem Cell Rep 11:973–987
CrossRef Google scholar
[40]
Liu K, Song Y, Yu H, Zhao T (2014) Understanding the roadmaps to induced pluripotency. Cell Death Dis 5:e1232
CrossRef Google scholar
[41]
Liu K, Zhao Q, Liu P, Cao J, Gong J, Wang C, Wang W, Li X, Sun H, Zhang C (2016a) ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy 12:2000–2008
CrossRef Google scholar
[42]
Liu P, Liu K, Gu H, Wang W, Gong J, Zhu Y, Zhao Q, Cao J, Han C, Gao F (2017) High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1. Cell Death Differ 24:1672–1680
CrossRef Google scholar
[43]
Liu X, Yao Y, Ding H, Han C, Chen Y, Zhang Y, Wang C, Zhang X, Zhang Y, Zhai Y (2016b) USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduct Target Ther 1:16024
CrossRef Google scholar
[44]
Ma T, Li J, Xu Y, Yu C, Xu T, Wang H, Liu K, Cao N, Nie BM, Zhu SY (2015) Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol 17:1379–1387
CrossRef Google scholar
[45]
Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675
CrossRef Google scholar
[46]
Mathieu J, Ruohola-Baker H (2017) Metabolic remodeling during the loss and acquisition of pluripotency. Development 144:541–551
CrossRef Google scholar
[47]
Mayer RJ (2000) The meteoric rise of regulated intracellular proteolysis. Nat Rev Mol Cell Biol 1:145–148
CrossRef Google scholar
[48]
Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle (Georgetown, Tex) 10:3658–3677
CrossRef Google scholar
[49]
Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668
CrossRef Google scholar
[50]
Moretto-Zita M, Jin H, Shen Z, Zhao T, Briggs SP, Xu Y (2010) Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci USA 107:13312–13317
CrossRef Google scholar
[51]
Naujokat C, Saric T (2007) Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells (Dayton, Ohio) 25:2408–2418
CrossRef Google scholar
[52]
Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145:835–850
CrossRef Google scholar
[53]
Ramakrishna S, Suresh B, Lim KH, Cha BH, Lee SH, Kim KS, Baek KH (2011) PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev 20:1511–1519
CrossRef Google scholar
[54]
Ryu JM, Han HJ (2011) L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J Biol Chem 286:23667–23678
CrossRef Google scholar
[55]
Schultz GA, Kaye PL, McKay DJ, Johnson MH (1981) Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J Reprod Fertil 61:387–393
CrossRef Google scholar
[56]
Sellens MH, Stein S, Sherman MI (1981) Protein and free amino acid content in preimplantation mouse embryos and in blastocysts under various culture conditions. J Reprod Fertil 61:307–315
CrossRef Google scholar
[57]
Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G, Aburatani H, Kume K, Endo F, Kume S (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19:780–794
CrossRef Google scholar
[58]
Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer JJ, Zhu H (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226
CrossRef Google scholar
[59]
Singh AM, Dalton S (2009) The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5:141–149
CrossRef Google scholar
[60]
Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H (2015) The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 17:1523–1535
CrossRef Google scholar
[61]
Spindle AI, Pedersen RA (1973) Hatching, attachment, and outgrowth of mouse blastocysts in vitro: fixed nitrogen requirements. J Exp Zool 186:305–318
CrossRef Google scholar
[62]
Szutorisz H, Georgiou A, Tora L, Dillon N (2006) The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 127:1375–1388
CrossRef Google scholar
[63]
Tang S, Fang Y, Huang G, Xu X, Padilla-Banks E, Fan W, Xu Q, Sanderson SM, Foley JF, Dowdy S (2017) Methionine metabolism is essential for SIRT1-regulated mouse embryonic stem cell maintenance and embryonic development. EMBO J 36:3175–3193
CrossRef Google scholar
[64]
Van Winkle LJ (2001) Amino acid transport regulation and early embryo development. Biol Reprod 64:1–12
CrossRef Google scholar
[65]
Vessoni AT, Muotri AR, Okamoto OK (2012) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21:513–520
CrossRef Google scholar
[66]
Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, Spencer B, Page L, Masliah E, Berggren WT (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489:304–308
CrossRef Google scholar
[67]
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325:435–439
CrossRef Google scholar
[68]
Wang J, Zhang Y, Hou J, Qian X, Zhang H, Zhang Z, Li M, Wang R, Liao K, Wang Y (2016) Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ 23:393–404
CrossRef Google scholar
[69]
Wang L, Zhang T, Wang L, Cai Y, Zhong X, He X, Hu L, Tian S, Wu M, Hui L (2017) Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. EMBO J 36:1330–1347
CrossRef Google scholar
[70]
Wang S, Xia P, Ye B, Huang G, Liu J, Fan Z (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13:617–625
CrossRef Google scholar
[71]
Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G (2011) The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-Cdependent manner. Cell Stem Cell 9:575–587
CrossRef Google scholar
[72]
Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1S transition and promote rapid proliferation. Nat Genet 40:1478–1483
CrossRef Google scholar
[73]
Washington JM, Rathjen J, Felquer F, Lonic A, Bettess MD, Hamra N, Semendric L, Tan BS, Lake JA, Keough RA (2010) L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 298:C982–992
CrossRef Google scholar
[74]
Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178
CrossRef Google scholar
[75]
Wu Y, Li Y, Zhang H, Huang Y, Zhao P, Tang Y, Qiu X, Ying Y, Li W, Ni S (2015) Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat Cell Biol 17:715–725
CrossRef Google scholar
[76]
Xiang G, Yang L, Long Q, Chen K, Tang H, Wu Y, Liu Z, Zhou Y, Qi J, Zheng L (2017) BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming. Autophagy 13:1543–1555
CrossRef Google scholar
[77]
Xu H, Wang W, Li C, Yu H, Yang A, Wang B, Jin Y (2009) WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res 19:561–573
CrossRef Google scholar
[78]
Xu HM, Liao B, Zhang QJ, Wang BB, Li H, Zhong XM, Sheng HZ, Zhao YX, Zhao YM, Jin Y (2004) Wwp2, an E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination. J Biol Chem 279:23495–23503
CrossRef Google scholar
[79]
Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18:325–332
CrossRef Google scholar
[80]
Yanes O, Clark J, Wong DM, Patti GJ, Sanchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G (2010) Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 6:411–417
CrossRef Google scholar
[81]
Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z (2014) The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20:526–540
CrossRef Google scholar
[82]
Zhang H, Badur MG, Divakaruni AS, Parker SJ, Jager C, Hiller K, Murphy AN, Metallo CM (2016a) Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions. Cell Rep 16:1536–1547
CrossRef Google scholar
[83]
Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D’Amico D, Ropelle ER, Lutolf MP, Aebersold R (2016b) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443
CrossRef Google scholar
[84]
Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11:589–595
CrossRef Google scholar
[85]
Zhang J, Zhao J, Dahan P, Lu V, Zhang C, Li H, Teitell MA (2018) Metabolism in pluripotent stem cells and early mammalian development. Cell Metab 27:332–338
CrossRef Google scholar
[86]
Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, Ma L, Hamm M, Gage FH, Hunter T (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Life 5:e13374
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(498 KB)

Accesses

Citations

Detail

Sections
Recommended

/