Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics
Hua Qin, Andong Zhao
Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, antiapoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
mesenchymal stem cells / cell therapy / acute respiratory distress syndrome / SARS-CoV-2 / COVID-19 / pneumonia
[1] |
Abraham A, Krasnodembskaya A (2020) Mesenchymal stem cellderived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med 9:28–38
CrossRef
Google scholar
|
[2] |
Alcayaga-Miranda F, Cuenca J, Martin A, Contreras L, Figueroa FE, Khoury M (2015) Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Res Ther 6:199
CrossRef
Google scholar
|
[3] |
Antebi B, Mohammadipoor A, Batchinsky AI, Cancio LC (2018) The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. J Trauma Acute Care Surg 84:183–191
CrossRef
Google scholar
|
[4] |
Atluri S, Manchikanti L, Hirsch JA (2020) Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: the case for compassionate use. Pain Physician 23:E71–E83
|
[5] |
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF
CrossRef
Google scholar
|
[6] |
Bernard O, Jeny F, Uzunhan Y, Dondi E, Terfous R, Label R, Sutton A, Larghero J, Vanneaux V, Nunes H
CrossRef
Google scholar
|
[7] |
Bing L, Jun-hui C, Tao L, Hai-ying W, Wen-jie Y, Yan-jiao L, Jianchun L, Cong-tao Y, Fang-ang N, Zhao-xia M
|
[8] |
Bustos ML, Huleihel L, Meyer EM, Donnenberg AD, Donnenberg VS, Sciurba JD, Mroz L, McVerry BJ, Ellis BM, Kaminski N
CrossRef
Google scholar
|
[9] |
Cai S-x, Liu A-r, Chen S, He H-l, Chen Q-h, Xu J-Y, Pan C, Yang Y, Guo F-M, Huang Y-z
CrossRef
Google scholar
|
[10] |
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M
CrossRef
Google scholar
|
[11] |
Chacko SM, Ahmed S, Selvendiran K, Kuppusamy ML, Khan M, Kuppusamy P (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 299:C1562–C1570
CrossRef
Google scholar
|
[12] |
Chan MCW, Kuok DIT, Leung CYH, Hui KPY, Valkenburg SA, Lau EHY, Nicholls JM, Fang X, Guan Y, Lee JW
CrossRef
Google scholar
|
[13] |
Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, Xing F, Liu J, Yip CC-Y, Poon RW-S
CrossRef
Google scholar
|
[14] |
Chen J, Li C, Gao X, Li C, Liang Z, Yu L, Li Y, Xiao X, Chen L (2013) Keratinocyte growth factor gene delivery via mesenchymal stem cells protects against lipopolysaccharide-induced acute lung injury in mice. PLoS ONE 8:e83303
CrossRef
Google scholar
|
[15] |
Chen J, Li Y, Hao H, Li C, Du Y, Hu Y, Li J, Liang Z, Li C, Liu J
CrossRef
Google scholar
|
[16] |
Chen S, Chen X, Wu X, Wei S, Han W, Lin J, Kang M, Chen L (2017a) Hepatocyte growth factor-modified mesenchymal stem cells improve ischemia/reperfusion-induced acute lung injury in rats. Gene Ther 24:3–11
CrossRef
Google scholar
|
[17] |
Chen H-X, Xiang H, Xu W-H, Li M, Yuan J, Liu J, Sun W-J, Zhang R, Li J, Ren Z-Q
CrossRef
Google scholar
|
[18] |
Chen X, Zhang Y, Wang W, Liu Z, Meng J, Han Z (2018) Mesenchymal stem cells modified with heme oxygenase-1 have enhanced paracrine function and attenuate lipopolysaccharideinduced inflammatory and oxidative damage in pulmonary microvascular endothelial cells. Cell Physiol Biochem 49:101–122
CrossRef
Google scholar
|
[19] |
Chen X-X, Tang L, Han Z-H, Wang W-J, Meng J-G (2019a) Coculture with bone marrow-derived mesenchymal stem cells attenuates inflammation and apoptosis in lipopolysaccharidestimulated alveolar epithelial cells via enhanced secretion of keratinocyte growth factor and angiopoietin-1 modulating the Tolllike receptor-4 signal pathway. Mol Med Rep 19:1891–1902
CrossRef
Google scholar
|
[20] |
Chen X, Wu S, Tang L, Ma L, Wang F, Feng H, Meng J, Han Z (2019b) Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats. J Cell Physiol 234:7301–7319
CrossRef
Google scholar
|
[21] |
Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q
CrossRef
Google scholar
|
[22] |
Chen T, Di Wu, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H
CrossRef
Google scholar
|
[23] |
Chen J, Hu C, Chen L, Tang L, Zhu Y, Xu X, Chen L, Gao H, Lu X, Yu L
CrossRef
Google scholar
|
[24] |
Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, Pastore Y, Piontti A, Mu K, Rossi L
CrossRef
Google scholar
|
[25] |
Devaney J, Horie S, Masterson C, Elliman S, Barry F, O’Brien T, Curley GF, O’Toole D, Laffey JG (2015) Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 70:625–635
CrossRef
Google scholar
|
[26] |
Fang X, Neyrinck AP, Matthay MA, Lee JW (2010) Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 285:26211–26222
CrossRef
Google scholar
|
[27] |
Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692
CrossRef
Google scholar
|
[28] |
Garcia-Olmo D, Schwartz DA (2015) Cumulative evidence that mesenchymal stem cells promote healing of perianal fistulas of patients with Crohn’s disease-going from bench to bedside. Gastroenterology 149:853–857
CrossRef
Google scholar
|
[29] |
Ghinai I, McPherson TD, Hunter JC, Kirking HL, Christiansen D, Joshi K, Rubin R, Morales-Estrada S, Black SR, Pacilli M
CrossRef
Google scholar
|
[30] |
Golpanian S, Wolf A, Hatzistergos KE, Hare JM (2016) Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev 96:1127–1168
CrossRef
Google scholar
|
[31] |
Goolaerts A, Pellan-Randrianarison N, Larghero J, Vanneaux V, Uzunhan Y, Gille T, Dard N, Plan�s C, Matthay MA, Clerici C (2014) Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. Am J Physiol Lung Cell Mol Physiol 306:L975–L985
CrossRef
Google scholar
|
[32] |
Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, Satlin MJ, Campion TR, Nahid M, Ringel JB
CrossRef
Google scholar
|
[33] |
Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, Liu L, Shan H, Lei C-L, Hui DSC
CrossRef
Google scholar
|
[34] |
G�ldner A, Maron-Gutierrez T, Abreu SC, Xisto DG, Senegaglia AC, Barcelos PRdS, Silva JD, Brofman P, de Abreu MG, Rocco PRM (2015) Expanded endothelial progenitor cells mitigate lung injury in septic mice. Stem Cell Res Ther 6:230
CrossRef
Google scholar
|
[35] |
Gupta N, Krasnodembskaya A, Kapetanaki M, Mouded M, Tan X, Serikov V, Matthay MA (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–539
CrossRef
Google scholar
|
[36] |
Haberman R, Axelrad J, Chen A, Castillo R, Yan Di, Izmirly P, Neimann A, Adhikari S, Hudesman D, Scher JU (2020) Covid-19 in immune-mediated inflammatory diseases—case series from New York. N Engl J Med. https://doi.org/10.1056/NEJMc2009567
CrossRef
Google scholar
|
[37] |
Han J, Li Y, Li Y (2019) Strategies to enhance mesenchymal stem cell-based therapies for acute respiratory distress syndrome. Stem Cells Int 2019:5432134
CrossRef
Google scholar
|
[38] |
Hao Q, Zhu Y-g, Monsel A, Gennai S, Lee T, Xu F, Lee J-W (2015) Study of bone marrow and embryonic stem cell-derived human mesenchymal stem cells for treatment of escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells Transl Med 4:832–840
CrossRef
Google scholar
|
[39] |
Hao Q, Gudapati V, Monsel A, Park JH, Hu S, Kato H, Lee JH, Zhou L, He H, Lee JW (2019) Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice. J Immunol 203:1961–1972
CrossRef
Google scholar
|
[40] |
He H-l, Liu L, Chen Q-h, Cai S-x, Han J-B, Hu S-L, Chun P, Yang Y, Guo F-M, Huang Y-z
CrossRef
Google scholar
|
[41] |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A
CrossRef
Google scholar
|
[42] |
Hu S, Li J, Xu X, Liu A, He H, Xu J, Chen Q, Liu S, Liu L, Qiu H
CrossRef
Google scholar
|
[43] |
Hu S, Park J, Liu A, Lee J, Zhang X, Hao Q, Lee J-W (2018) Mesenchymal stem cell microvesicles restore protein permeability across primary cultures of injured human lung microvascular endothelial cells. Stem Cells Transl Med 7:615–624
CrossRef
Google scholar
|
[44] |
Huang Z, Liu H, Zhang X, Wen G, Zhu C, Zhao Y, Niu W, Qin Y, Chen H, Bai C
CrossRef
Google scholar
|
[45] |
Ionescu L, Byrne RN, van Haaften T, Vadivel A, Alphonse RS, Rey-Parra GJ, Weissmann G, Hall A, Eaton F, Th�baud B (2012) Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol 303:L967–L977
CrossRef
Google scholar
|
[46] |
Islam D, Huang Y, Fanelli V, Delsedime L, Wu S, Khang J, Han B, Grassi A, Li M, Xu Y
CrossRef
Google scholar
|
[47] |
Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, O’Kane CM, Krasnodembskaya AD (2016) Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34:2210–2223
CrossRef
Google scholar
|
[48] |
Kandel N, Chungong S, Omaar A, Xing J (2020) Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries. The Lancet.https://doi.org/10.1016/S0140-6736(20) 30553-5
CrossRef
Google scholar
|
[49] |
Kim ES, Chang YS, Choi SJ, Kim JK, Yoo HS, Ahn SY, Sung DK, Kim SY, Park YR, Park WS (2011) Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res 12:108
CrossRef
Google scholar
|
[50] |
Koff WC, Williams MA (2020) Covid-19 and immunity in aging populations—a new research agenda. N Engl J Med.https://doi.org/10.1056/NEJMp2006761
CrossRef
Google scholar
|
[51] |
Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee J-W, Matthay MA (2010) antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238
CrossRef
Google scholar
|
[52] |
Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee J-W, Gupta N, Petrini M, Matthay MA (2012) Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 302: L1003–L1013
CrossRef
Google scholar
|
[53] |
Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM, Sun F, Jit M, Munday JD
CrossRef
Google scholar
|
[54] |
Laffey JG, Matthay MA (2017) Fifty years of research in ARDS. Cellbased therapy for acute respiratory distress syndrome. biology and potential therapeutic value. Am J Respir Crit Care Med 196:266–273
CrossRef
Google scholar
|
[55] |
Lan Y-W, Choo K-B, Chen C-M, Hung T-H, Chen Y-B, Hsieh C-H, Kuo H-P, Chong K-Y (2015) Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther 6:97
CrossRef
Google scholar
|
[56] |
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature.https://doi.org/10.1038/s41586-020-2180-5
CrossRef
Google scholar
|
[57] |
Le HT, Nguyen LV, Tran DM, Do HT, Tran HT, Le YT, Phan PH (2020) The first infant case of COVID-19 acquired from a secondary transmission in Vietnam. Lancet Child Adolesc Health.https://doi.org/10.1016/S2352-4642(20)30091-2
CrossRef
Google scholar
|
[58] |
Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396
CrossRef
Google scholar
|
[59] |
Lee C-W, Chen Y-F, Wu H-H, Lee OK (2018) Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology 154:46–56
CrossRef
Google scholar
|
[60] |
Lee JH, Park J, Lee J-W (2019) Therapeutic use of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. Transfusion 59:876–883
CrossRef
Google scholar
|
[61] |
Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the antiinflammatory protein TSG-6. Cell Stem Cell 5:54–63
CrossRef
Google scholar
|
[62] |
Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA (2013) Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 187:751–760
CrossRef
Google scholar
|
[63] |
Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S
CrossRef
Google scholar
|
[64] |
Li B, Zhang H, Zeng M, He W, Li M, Huang X, Deng DYB, Wu J (2015) Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/β-catenin pathway. Cell Biol Int 39:192–200
CrossRef
Google scholar
|
[65] |
Li D, Liu Q, Qi L, Dai X, Liu H, Wang Y (2016) Low levels of TGF-β1 enhance human umbilical cord-derived mesenchymal stem cell fibronectin production and extend survival time in a rat model of lipopolysaccharide-induced acute lung injury. Mol Med Rep 14:1681–1692
CrossRef
Google scholar
|
[66] |
Li Y, Shi X, Yang L, Mou Y, Li Y, Dang R, Li C (2017) Hypoxia promotes the skewed differentiation of umbilical cord mesenchymal stem cells toward type II alveolar epithelial cells by regulating microRNA-145. Gene 630:68–75
CrossRef
Google scholar
|
[67] |
Li M-Y, Li L, Zhang Y, Wang X-S (2020) Expression of the SARSCoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 9:45
CrossRef
Google scholar
|
[68] |
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Chen L, Li J, Wang X, Wang F
CrossRef
Google scholar
|
[69] |
Liu A-r, Liu Le, Chen S, Yang Y, Zhao H-J, Liu L, Guo F-M, Lu X-M, Qiu H-B (2013) Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J Cell Physiol 228:1270–1283
CrossRef
Google scholar
|
[70] |
Lopes-Pacheco M, Robba C, Rocco PRM, Pelosi P (2019) Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biol Toxicol.https://doi.org/10.1007/s10565-019-09493-5
CrossRef
Google scholar
|
[71] |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N
CrossRef
Google scholar
|
[72] |
Maron-Gutierrez T, Silva JD, Asensi KD, Bakker-Abreu I, Shan Y, Diaz BL, Goldenberg RCS, Mei SHJ, Stewart DJ, Morales MM
CrossRef
Google scholar
|
[73] |
Mart�nez-Gonz�lez I, Roca O, Masclans JR, Moreno R, Salcedo MT, Baekelandt V, Cruz MJ, Rello J, Aran JM (2013) Human mesenchymal stem cells overexpressing the IL-33 antagonist soluble IL-1 receptor-like-1 attenuate endotoxin-induced acute lung injury. Am J Respir Cell Mol Biol 49:552–562
CrossRef
Google scholar
|
[74] |
Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, Rogers AJ, Gotts JE, Wiener-Kronish JP, Bajwa EK
CrossRef
Google scholar
|
[75] |
McIntyre LA, Moher D, Fergusson DA, Sullivan KJ, Mei SHJ, Lalu M, Marshall J, Mcleod M, Griffin G, Grimshaw J
CrossRef
Google scholar
|
[76] |
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 395:1033–1034
CrossRef
Google scholar
|
[77] |
Mei SHJ, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ (2007) Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 4:e269
CrossRef
Google scholar
|
[78] |
Meng S-S, Guo F-M, Zhang X-W, Chang W, Peng F, Qiu H-B, Yang Y (2019) mTOR/STAT-3 pathway mediates mesenchymal stem cell-secreted hepatocyte growth factor protective effects against lipopolysaccharide-induced vascular endothelial barrier dysfunction and apoptosis. J Cell Biochem 120:3637–3650
CrossRef
Google scholar
|
[79] |
Millar JE, von Bahr V, Malfertheiner MV, Ki KK, Redd MA, Bartnikowski N, Suen JY, McAuley DF, Fraser JF (2019) Administration of mesenchymal stem cells during ECMO results in a rapid decline in oxygenator performance. Thorax 74:194–196
CrossRef
Google scholar
|
[80] |
Mokhber Dezfouli MR, Jabbari Fakhr M, Sadeghian Chaleshtori S, Dehghan MM, Vajhi A, Mokhtari R (2018) Intrapulmonary autologous transplant of bone marrow-derived mesenchymal stromal cells improves lipopolysaccharide-induced acute respiratory distress syndrome in rabbit. Crit Care 22:353
CrossRef
Google scholar
|
[81] |
Molendijk I, Bonsing BA, Roelofs H, Peeters KCMJ, Wasser MNJM, Dijkstra G, van der Woude CJ, Duijvestein M, Veenendaal RA, Zwaginga J-J
CrossRef
Google scholar
|
[82] |
Monteil V, Kwon H, Prado P, Hagelkr�ys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F
CrossRef
Google scholar
|
[83] |
Papazian L, Aubron C, Brochard L, Chiche J-D, Combes A, Dreyfuss D, Forel J-M, Gu�rin C, Jaber S, Mekontso-Dessap A
CrossRef
Google scholar
|
[84] |
Park J, Kim S, Lim H, Liu A, Hu S, Lee J, Zhuo H, Hao Q, Matthay MA, Lee J-W (2019) Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax 74:43–50
CrossRef
Google scholar
|
[85] |
Pedrazza L, Cunha AA, Luft C, Nunes NK, Schimitz F, Gassen RB, Breda RV, Donadio MVF, Souza Wyse AT, Pitrez PMC
CrossRef
Google scholar
|
[86] |
Perico L, Morigi M, Rota C, Breno M, Mele C, Noris M, Introna M, Capelli C, Longaretti L, Rottoli D
CrossRef
Google scholar
|
[87] |
Qin Z-h, Xu J-f, Qu J-M, Zhang J, Sai Y, Chen C-m, Wu L, Yu L (2012) Intrapleural delivery of MSCs attenuates acute lung injury by paracrine/endocrine mechanism. J Cell Mol Med 16:2745–2753
CrossRef
Google scholar
|
[88] |
Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratorydistress syndrome: the Berlin Definition. JAMA 307:2526–2533
|
[89] |
Ren H, Zhang Q, Wang J, Pan R (2018) Comparative effects ofumbilical cord- and menstrual blood-derived MSCs in repairing acute lung injury. Stem Cells Int 2018:7873625
CrossRef
Google scholar
|
[90] |
Ronco C, Reis T (2020) Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol.https://doi.org/10.1038/s41581-020-0284-7
CrossRef
Google scholar
|
[91] |
Schett G, Sticherling M, Neurath MF (2020) COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol 20:271–272
CrossRef
Google scholar
|
[92] |
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F (2020) Structural basis of receptor recognition by SARSCoV-2. Nature.https://doi.org/10.1038/s41586-020-2179-y
CrossRef
Google scholar
|
[93] |
Shao Y, Shen J, Zhou F, He D (2018) Mesenchymal stem cells overexpressing Ang1 attenuates phosgene-induced acute lung injury in rats. Inhal Toxicol 30:313–320
CrossRef
Google scholar
|
[94] |
Shao Y, Zhou F, He D, Zhang L, Shen J (2019) Overexpression of CXCR7 promotes mesenchymal stem cells to repair phosgeneinduced acute lung injury in rats. Biomed Pharmacother 109:1233–1239
CrossRef
Google scholar
|
[95] |
Silva JD, Lopes-Pacheco M, Paz AHR, Cruz FF, Melo EB, de Oliveira MV, Xisto DG, Capelozzi VL, Morales MM, Pelosi P
CrossRef
Google scholar
|
[96] |
Simonson OE, Mougiakakos D, Heldring N, Bassi G, Johansson HJ, Dal�n M, Jitschin R, Rodin S, Corbascio M, El Andaloussi S
CrossRef
Google scholar
|
[97] |
Stappenbeck TS, Miyoshi H (2009) The role of stromal stem cells in tissue regeneration and wound repair. Science 324:1666–1669
CrossRef
Google scholar
|
[98] |
Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P (2020) COVID-19: combining antiviral and antiinflammatory treatments. Lancet Infect Dis 20:400–402
CrossRef
Google scholar
|
[99] |
Su VY-F, Lin C-S, Hung S-C, Yang K-Y (2019) Mesenchymal stem cell-conditioned medium induces neutrophil apoptosis associated with inhibition of the NF-κB pathway in endotoxin-induced acute lung injury. Int J Mol Sci.https://doi.org/10.3390/ijms20092208
CrossRef
Google scholar
|
[100] |
Sun K, Chen J, Viboud C (2020) Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit Health 2:e201–e208
CrossRef
Google scholar
|
[101] |
Sung DK, Chang YS, Sung S, Yoo HS, Ahn SY, Park WS (2016) Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell Microbiol 18:424–436
CrossRef
Google scholar
|
[102] |
van de Veerdonk FL, Netea MG, van Deuren M, van der Meer JW, de Mast Q, Br�ggemann RJ, van der Hoeven H (2020) Kallikreinkinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. Elife.https://doi.org/10.7554/eLife.57555
CrossRef
Google scholar
|
[103] |
Vaninov N (2020) In the eye of the COVID-19 cytokine storm. Nat Rev Immunol 20:277
CrossRef
Google scholar
|
[104] |
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H (2020) Endothelial cell infection and endotheliitis in COVID-19. The Lancet 395:1417–1418
CrossRef
Google scholar
|
[105] |
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–292.e6
CrossRef
Google scholar
|
[106] |
Wang Y-Y, Li X-Z, Wang L-B (2013) Therapeutic implications of mesenchymal stem cells in acute lung injury/acute respiratory distress syndrome. Stem Cell Res Ther 4:45
CrossRef
Google scholar
|
[107] |
Wang L, Shi M, Tong L, Wang J, Ji S, Bi J, Chen C, Jiang J, Bai C, Zhou J
CrossRef
Google scholar
|
[108] |
Wang L, He W, Yu X, Hu D, Bao M, Liu H, Zhou J, Jiang H (2020a) Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect.https://doi.org/10.1016/j.jinf.2020.03.019
CrossRef
Google scholar
|
[109] |
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen K-Y
CrossRef
Google scholar
|
[110] |
Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Calfee CS, Lee J-W
CrossRef
Google scholar
|
[111] |
Xiang B, Chen L, Wang X, Zhao Y, Wang Y, Xiang C (2017) Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury. Int J Mol Sci.https://doi.org/10.3390/ijms18040689
CrossRef
Google scholar
|
[112] |
Xu J, Qu J, Cao L, Sai Y, Chen C, He L, Yu L (2008) Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 214:472–481
CrossRef
Google scholar
|
[113] |
Xu X-P, Huang L-L, Hu S-L, Han J-B, He H-l, Xu J-Y, Xie J-F, Liu A-r, Liu S-Q, Liu L
CrossRef
Google scholar
|
[114] |
Xu N, Shao Y, Ye K, Qu Y, Memet O, He D, Shen J (2019) Mesenchymal stem cell-derived exosomes attenuate phosgeneinduced acute lung injury in rats. Inhal Toxicol 31:52–60
CrossRef
Google scholar
|
[115] |
Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J
|
[116] |
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L
CrossRef
Google scholar
|
[117] |
Yan X, Fu X, Jia Y, Ma X, Tao J, Yang T, Ma H, Liang X, Liu X, Yang J
CrossRef
Google scholar
|
[118] |
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science.https://doi.org/10.1126/science.abb2762
CrossRef
Google scholar
|
[119] |
Yang J-X, Zhang N, Wang H-W, Gao P, Yang Q-P, Wen Q-P (2015a) CXCR4 receptor overexpression in mesenchymal stem cells facilitates treatment of acute lung injury in rats. J Biol Chem 290:1994–2006
CrossRef
Google scholar
|
[120] |
Yang Y, Chen Q-h, Liu A-r, Xu X-P, Han J-B, Qiu H-B (2015b) Synergism of MSC-secreted HGF and VEGF in stabilising endothelial barrier function upon lipopolysaccharide stimulation via the Rac1 pathway. Stem Cell Res Ther 6:250
CrossRef
Google scholar
|
[121] |
Yang Y, Shen C, Li J, Yuan J, Wei J, Huang F, Wang F, Li G, Li Y, Xing L
CrossRef
Google scholar
|
[122] |
Yuan M, Wu NC, Zhu X, Lee C-CD, So RTY, Lv H, Mok CKP, Wilson IA (2020) A highly conserved cryptic epitope in the receptorbinding domains of SARS-CoV-2 and SARS-CoV. Science
CrossRef
Google scholar
|
[123] |
Zhang W, Liu L, Huo Y, Yang Y, Wang Y (2014) Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. Biomed Res Int 2014:462472
CrossRef
Google scholar
|
[124] |
Zhang C, Zhu Y, Wang J, Hou L, Li W, An H (2019a) CXCR4-overexpressing umbilical cord mesenchymal stem cells enhance protection against radiation-induced lung injury. Stem Cells Int 2019:2457082
CrossRef
Google scholar
|
[125] |
Zhang L, Li Q, Liu W, Liu Z, Shen H, Zhao M (2019b) Mesenchymal stem cells alleviate acute lung injury and inflammatory responses induced by paraquat poisoning. Med Sci Monit 25:2623–2632
CrossRef
Google scholar
|
[126] |
Zhang X, Chen J, Xue M, Tang Y, Xu J, Liu L, Huang Y, Yang Y, Qiu H, Guo F (2019c) Overexpressing p130/E2F4 in mesenchymal stem cells facilitates the repair of injured alveolar epithelial cells in LPS-induced ARDS mice. Stem Cell Res Ther 10:74
CrossRef
Google scholar
|
[127] |
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensiv Care Med 46:586–590
CrossRef
Google scholar
|
[128] |
Zhao Y-F, Xiong W, Wu X-L (2014) Mesenchymal stem cell-based developmental endothelial locus-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. Mol Med Rep 9:1583–1589
CrossRef
Google scholar
|
[129] |
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W (2020) Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2
CrossRef
Google scholar
|
[130] |
Zheng G, Huang L, Tong H, Shu Q, Hu Y, Ge M, Deng K, Zhang L, Zou B, Cheng B
CrossRef
Google scholar
|
[131] |
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z (2020) Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 17:533–535
CrossRef
Google scholar
|
[132] |
Zhou Z, You Z (2016) Mesenchymal stem cells alleviate LPSinduced acute lung injury in mice by MiR-142a-5p-controlled pulmonary endothelial cell autophagy. Cell Physiol Biochem 38:258–266
CrossRef
Google scholar
|
[133] |
Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L
CrossRef
Google scholar
|
[134] |
Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Sun R, Tian Z, Xu X, Wei H (2020b) Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev.https://doi.org/10.1093/nsr/nwaa041
CrossRef
Google scholar
|
[135] |
Zhu H, Xiong Y, Xia Y, Zhang R, Tian D, Wang T, Dai J, Wang L, Yao H, Jiang H
CrossRef
Google scholar
|
[136] |
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R
CrossRef
Google scholar
|
/
〈 | 〉 |