New avenues for systematically inferring cellcell communication: through single-cell transcriptomics data
Xin Shao, Xiaoyan Lu, Jie Liao, Huajun Chen, Xiaohui Fan
New avenues for systematically inferring cellcell communication: through single-cell transcriptomics data
For multicellular organisms, cell-cell communication is essential to numerous biological processes. Drawing upon the latest development of single-cell RNA-sequencing (scRNA-seq), high-resolution transcriptomic data have deepened our understanding of cellular phenotype heterogeneity and composition of complex tissues, which enables systematic cell-cell communication studies at a single-cell level. We first summarize a common workflow of cell-cell communication study using scRNA-seq data, which often includes data preparation, construction of communication networks, and result validation. Two common strategies taken to uncover cell-cell communications are reviewed, e.g., physically vicinal structure-based and ligand-receptor interaction-based one. To conclude, challenges and current applications of cell-cell communication studies at a single-cell resolution are discussed in details and future perspectives are proposed.
cell-cell communication / single-cell RNA sequencing / physical contact-dependent communication / chemical signal-dependent communication / ligand-receptor interaction / network biology
[1] |
Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382
CrossRef
Google scholar
|
[2] |
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR
CrossRef
Google scholar
|
[3] |
Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822
CrossRef
Google scholar
|
[4] |
Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113
CrossRef
Google scholar
|
[5] |
Bessis M(1958) Erythroblastic island, functional unity of bone marrow. Rev Hematol 13:8–11
|
[6] |
Boisset JC, Vivie J, Grun D, Muraro MJ, Lyubimova A, van Oudenaarden A(2018) Mapping the physical network of cellular interactions. Nat Methods 15:547–553
CrossRef
Google scholar
|
[7] |
Braga VM (2002) Cell-cell adhesion and signalling. Curr Opin Cell Biol 14:546–556
CrossRef
Google scholar
|
[8] |
Budnik B, Levy E, Harmange G, Slavov N (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19:161
CrossRef
Google scholar
|
[9] |
Burns JC, Kelly MC, Hoa M, Morell RJ, Kelley MW (2015) Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun 6:8557
CrossRef
Google scholar
|
[10] |
Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, Kanton S, Kageyama J, Damm G, Seehofer D
CrossRef
Google scholar
|
[11] |
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ
CrossRef
Google scholar
|
[12] |
Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa JL, Packer JS, Christiansen L
CrossRef
Google scholar
|
[13] |
Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ, Tan DS, Robson P,Loh YH, Quake SR
CrossRef
Google scholar
|
[14] |
Cohen M, Giladi A, Gorki AD, Solodkin DG, Zada M, Hladik A, Miklosi A, Salame TM, Halpern KB, David E
CrossRef
Google scholar
|
[15] |
Collins BC, Aebersold R (2018) Proteomics goes parallel. Nat Biotechnol 36:1051–1053
CrossRef
Google scholar
|
[16] |
Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q,Li G, Yang P, Yu H, Li H
CrossRef
Google scholar
|
[17] |
Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R (2020) CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 15(4):1484–1506
CrossRef
Google scholar
|
[18] |
Eng CL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C,Yuan GC
CrossRef
Google scholar
|
[19] |
Evans WH (2015) Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 43:450–459
CrossRef
Google scholar
|
[20] |
Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, Khan NS, Wong CK, Shamailova R, Hill CA
CrossRef
Google scholar
|
[21] |
Gao S,Yan L, Wang R, Li J, Yong J, Zhou X, Wei Y, Wu X, Wang X, Fan X
CrossRef
Google scholar
|
[22] |
Gartner ZJ, Prescher JA, Lavis LD (2017) Unraveling cell-to-cell signaling networks with chemical biology. Nat Chem Biol 13:564–568
CrossRef
Google scholar
|
[23] |
Grun D, Lyubimova A, Kester L,Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–255
CrossRef
Google scholar
|
[24] |
Halpern KB, Shenhav R, Matcovitch-Natan O,Toth B, Lemze D, Golan M, Massasa EE, Baydatch S,Landen S, Moor AE
CrossRef
Google scholar
|
[25] |
Hashimshony T,Wagner F, Sher N, Yanai I (2012) CEL-Seq: singlecell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673
CrossRef
Google scholar
|
[26] |
Hu Y,Wang X, Hu B, Mao Y, Chen Y, Yan L,Yong J, Dong J, Wei Y, Wang W
CrossRef
Google scholar
|
[27] |
Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I,Mildner A, Cohen N,Jung S, Tanay A
CrossRef
Google scholar
|
[28] |
Kirouac DC, Madlambayan GJ, Yu M, Sykes EA, Ito C, Zandstra PW (2009) Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol 5:293
CrossRef
Google scholar
|
[29] |
Kiselev VY, Yiu A, Hemberg M (2018) scmap: projection of singlecell RNA-seq data across data sets. Nat Methods 15:359–362
CrossRef
Google scholar
|
[30] |
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V,Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201
CrossRef
Google scholar
|
[31] |
Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, Hashimoto A, Vonteddu P, Behera R, Goins MA
CrossRef
Google scholar
|
[32] |
Kumar MP, Du J, Lagoudas G,Jiao Y, Sawyer A, Drummond DC, Lauffenburger DA, Raue A (2018) Analysis of single-cell RNASeq identifies cell-cell communication associated with tumor characteristics. Cell Rep 25:1458–1468e1454
CrossRef
Google scholar
|
[33] |
Li L, Dong J, Yan L, Yong J, Liu X, Hu Y,Fan X, Wu X, Guo H, Wang X
CrossRef
Google scholar
|
[34] |
Liao J, Hao C, Huang W,Shao X, Song Y,Liu L, Ai N, Fan X (2018) Network pharmacology study reveals energy metabolism and apoptosis pathways-mediated cardioprotective effects of Shenqi Fuzheng. J Ethnopharmacol 227:155–165
CrossRef
Google scholar
|
[35] |
Lin X, Spindler TJ, de Souza Fonseca MA, Corona RI, Seo JH, Dezem FS, Li L, Lee JM,Long HW, Sellers TA
CrossRef
Google scholar
|
[36] |
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM
CrossRef
Google scholar
|
[37] |
Manwani D, Bieker JJ (2008) The erythroblastic island. Curr Top Dev Biol 82:23–53
CrossRef
Google scholar
|
[38] |
Martin JC, Chang C, Boschetti G,Ungaro R, Giri M, Grout JA, Gettler K, Chuang LS, Nayar S, Greenstein AJ
CrossRef
Google scholar
|
[39] |
Marx V (2019) A dream of single-cell proteomics. Nat Methods 16:809–812
CrossRef
Google scholar
|
[40] |
Mittal K, Eremenko E, Berner O, Elyahu Y, Strominger I, Apelblat D, Nemirovsky A, Spiegel I, Monsonego A (2019) CD4 T cells induce a subset of MHCII-expressing microglia that attenuates Alzheimer pathology. iScience 16:298–311
CrossRef
Google scholar
|
[41] |
Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG, Gottgens B (2016) A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128:e20–31
CrossRef
Google scholar
|
[42] |
Nitzan M, Karaiskos N, Friedman N, Rajewsky N (2019) Gene expression cartography. Nature 576:132–137
CrossRef
Google scholar
|
[43] |
Pan G, Cavalli M, Carlsson B, Skrtic S, Kumar C, Wadelius C (2020) rs953413 Regulates polyunsaturated fatty acid metabolism by modulating ELOVL2 expression. iScience 23:100808
CrossRef
Google scholar
|
[44] |
Petersen F, Bock L, Flad HD, Brandt E (1999) Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 94:4020–4028
CrossRef
Google scholar
|
[45] |
Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, Moore R, McClanahan TK,Sadekova S, Klappenbach JA (2017) Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 35:936–939
CrossRef
Google scholar
|
[46] |
Pfaff DW, Baum MJ (2018) Hormone-dependent medial preoptic/ lumbar spinal cord/autonomic coordination supporting male sexual behaviors. Mol Cell Endocrinol 467:21–30
CrossRef
Google scholar
|
[47] |
Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098
CrossRef
Google scholar
|
[48] |
Rajbhandari P, Arneson D, Hart SK, Ahn IS, Diamante G, Santos LC, Zaghari N, Feng AC, Thomas BJ, Vergnes L
CrossRef
Google scholar
|
[49] |
Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, Itoh M, Kawaji H, Carninci P, Rost B
CrossRef
Google scholar
|
[50] |
Ramos P,Casu C, Gardenghi S, Breda L,Crielaard BJ, Guy E,Marongiu MF, Gupta R, Levine RL, Abdel-Wahab O
CrossRef
Google scholar
|
[51] |
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J,Chen LM, Chen F, Macosko EZ (2019) Slide-seq: a scalable technology for measuring genomewide expression at high spatial resolution. Science 363:1463–1467
CrossRef
Google scholar
|
[52] |
Rothbauer M, Zirath H, Ertl P (2018) Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab Chip 18:249–270
CrossRef
Google scholar
|
[53] |
Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502
CrossRef
Google scholar
|
[54] |
Scott CL, Guilliams M (2018) Tissue unit-ed: lung cells team up to drive alveolar macrophage development. Cell 175:898–900
CrossRef
Google scholar
|
[55] |
Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N
CrossRef
Google scholar
|
[56] |
Shao X, Ai N, Xu D, Fan X (2016) Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herbdrug interaction reports, computational analysis and experimental studies. Spectrochim Acta A Mol Biomol Spectrosc 161:1–7
CrossRef
Google scholar
|
[57] |
Shao X, Lv N, Liao J,Long J,Xue R, Ai N, Xu D, Fan X (2019) Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Med Genet 20:175
CrossRef
Google scholar
|
[58] |
Shao X, Liao J, Lu X, Xue R, Ai N, Fan X (2020) scCATCH: automatic annotation on cell types of clusters from single-cell RNA sequencing data. iScience 23:100882
CrossRef
Google scholar
|
[59] |
Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV (2018) Sensory neuron diversity in the inner ear is shaped by activity. Cell 174:1229–1246 e1217
CrossRef
Google scholar
|
[60] |
Sicard RE (1986) Hormones, neurosecretions, and growth factors as signal molecules for intercellular communication. Dev Comp Immunol 10:269–272
CrossRef
Google scholar
|
[61] |
Singer SJ (1992) Intercellular communication and cell-cell adhesion. Science 255:1671–1677
CrossRef
Google scholar
|
[62] |
Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal NA, Pinto AR (2018) Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep 22:600–610
CrossRef
Google scholar
|
[63] |
Song Y,Xu X, Wang W, Tian T, Zhu Z, Yang C (2019) Single cell transcriptomics: moving towards multi-omics. Analyst 144:3172–3189
CrossRef
Google scholar
|
[64] |
Stagg RB, Fletcher WH (1990) The hormone-induced regulation of contact-dependent cell-cell communication by phosphorylation. Endocr Rev 11:302–325
CrossRef
Google scholar
|
[65] |
Stoeckius M, Hafemeister C, Stephenson W,Houck-Loomis B,Chattopadhyay PK, Swerdlow H, Satija R, Smibert P (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868
CrossRef
Google scholar
|
[66] |
Stuart T, Satija R (2019) Integrative single-cell analysis. Nat Rev Genet 20:257–272
CrossRef
Google scholar
|
[67] |
Sugiyama E, Guerrini MM, Honda K, Hattori Y, Abe M, Kallback P, Andren PE, Tanaka KF, Setou M, Fagarasan S
CrossRef
Google scholar
|
[68] |
Swaminathan J, Boulgakov AA, Hernandez ET, Bardo AM, Bachman JL, Marotta J, Johnson AM, Anslyn EV, Marcotte EM (2018) Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat Biotechnol 36:1076–1082
CrossRef
Google scholar
|
[69] |
Szczerba BM, Castro-Giner F, Vetter M, Krol I,Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R,Singer J
CrossRef
Google scholar
|
[70] |
Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G
CrossRef
Google scholar
|
[71] |
Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polanski K, Goncalves A
CrossRef
Google scholar
|
[72] |
Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH, Carbone L, Steemers FJ, Adey A (2017) Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods 14:302–308
CrossRef
Google scholar
|
[73] |
Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232
CrossRef
Google scholar
|
[74] |
Wang X, Song W, Kawazoe N, Chen G (2013) The osteogenic differentiation of mesenchymal stem cells by controlled cell-cell interaction on micropatterned surfaces. J Biomed Mater Res A 101:3388–3395
CrossRef
Google scholar
|
[75] |
Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J
CrossRef
Google scholar
|
[76] |
Wang S, Karikomi M, MacLean AL, Nie Q(2019) Cell lineage and communication network inference via optimization for single-cell transcriptomics. Nucleic Acids Res 47(11):e66
CrossRef
Google scholar
|
[77] |
Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, Zhao XY, Ji Y, Li C, Guo L
CrossRef
Google scholar
|
[78] |
Xu Y, Ji K, Wu M, Hao B, Yao KT, Xu Y (2019) A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1. Protein Cell 10:595–605
CrossRef
Google scholar
|
[79] |
Xue R, Liao J, Shao X, Han K, Long J, Shao L, Ai N, Fan X (2020) Prediction of adverse drug reactions by combining biomedical tripartite network and graph representation model. Chem Res Toxicol 33:202–210
CrossRef
Google scholar
|
[80] |
Zepp JA, Zacharias WJ, Frank DB, Cavanaugh CA, Zhou S, Morley MP, Morrisey EE (2017) Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170:1134–1148 e1110
CrossRef
Google scholar
|
[81] |
Zhang L, Vertes A (2018) Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem Int Ed Engl 57:4466–4477
CrossRef
Google scholar
|
[82] |
Zhang Y, Yan Z, Qin Q, Nisenblat V, Chang HM, Yu Y, Wang T, Lu C,Yang M, Yang S
CrossRef
Google scholar
|
[83] |
Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, Luo T, Xu L, Liao G, Yan M
CrossRef
Google scholar
|
[84] |
Zhang L, Vertes A (2018) Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem Int Ed Engl 57:4466–4477
CrossRef
Google scholar
|
[85] |
Zheng GX, Terry JM, Belgrader P,Ryvkin P,Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J
CrossRef
Google scholar
|
[86] |
Zheng G, Jiang C, Li Y,Yang D, Ma Y,Zhang B, Li X, Zhang P, Hu X, Zhao X
CrossRef
Google scholar
|
[87] |
Zhou B, Liu C, Xu L, Yuan Y, Zhao J, Zhao W, Chen Y, Qiu J, Meng M, Zheng Y
CrossRef
Google scholar
|
[88] |
Zhu C,Preissl S, Ren B (2020) Single-cell multimodal omics: the power of many. Nat Methods 17:11–14
CrossRef
Google scholar
|
/
〈 | 〉 |