High resolution structure of hexameric herpesvirus DNA-packaging motor elucidates revolving mechanism and ends 20-year fervent debate

Peixuan Guo

PDF(642 KB)
PDF(642 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (5) : 311-315. DOI: 10.1007/s13238-020-00714-w
COMMENTARY
COMMENTARY

High resolution structure of hexameric herpesvirus DNA-packaging motor elucidates revolving mechanism and ends 20-year fervent debate

Author information +
History +

Cite this article

Download citation ▾
Peixuan Guo. High resolution structure of hexameric herpesvirus DNA-packaging motor elucidates revolving mechanism and ends 20-year fervent debate. Protein Cell, 2020, 11(5): 311‒315 https://doi.org/10.1007/s13238-020-00714-w

References

[1]
Acosta E, Bowlin T, Brooks J, Chiang L, Hussein I, Kimberlin D, Kauvar LM, Leavitt R, Prichard M, Whitley R (2020) Advances in the development of therapeutics for cytomegalovirus infections. J Infect Dis 221:S32–S44
CrossRef Google scholar
[2]
Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S (2013) Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 493:703–707
CrossRef Google scholar
[3]
Baumann RG, Mullaney J, Black LW (2006) Portal fusion protein constraints on function in DNA packaging of bacteriophage T4. Mol Microbiol 61:16–32
CrossRef Google scholar
[4]
Chang CL, Zhang H, Shu D, Guo P, Savran CA (2008) Bright-field analysis of phi29 DNA packaging motor using a magnetome-chanical system. Appl Phys Lett 93:153902
CrossRef Google scholar
[5]
Chen W, Xiao H, Wang X, Song S, Han Z, Li X, Yang F, Wang L, Song, Liu H (2020) Structural changes of a bacteriophage upon DNA packaging and maturation. Protein Cell. https://doi.org/10.1007/s13238-020-00715-9
CrossRef Google scholar
[6]
Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y (2019) Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature 565:49–55
CrossRef Google scholar
[7]
Goldner T, Hewlett G, Ettischer N, Ruebsamen-Schaeff H, Zimmer-mann H, Lischka P (2011) The novel anticytomegalovirus compound AIC246 (Letermovir) inhibits human cytomegalovirus replication through a specific antiviral mechanism that involves the viral terminase. J Virol 85:10884–10893
CrossRef Google scholar
[8]
Guo P, Peterson C, Anderson D (1987a) Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage phi 29. J Mol Biol 197:229–236
CrossRef Google scholar
[9]
Guo PX, Erickson S, Anderson D (1987b) A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science 236:690–694
CrossRef Google scholar
[10]
Guo P, Zhang C, Chen C, Garver K, Trottier M (1998) Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2:149–155
CrossRef Google scholar
[11]
Guo P, Grainge I, Zhao Z, Vieweger M (2014) Two classes of nucleic acid translocation motors: rotation and revolution without rotation. Cell Biosci 4:54
CrossRef Google scholar
[12]
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X (2019) Controlling the revolving and rotating motion direction of asym-metric hexameric nanomotor by arginine finger and channel chirality. ACS Nano 13:6207–6223
CrossRef Google scholar
[13]
Hendrix RW (1978) Symmetry mismatch and DNA packaging in large bacteriophages. Proc Natl Acad Sci USA 75:4779–4783
CrossRef Google scholar
[14]
Hugel T, Michaelis J, Hetherington CL, Jardine PJ, Grimes S, Walter JM, Falk W, Anderson DL, Bustamante C (2007) Experimental test of connector rotation during DNA packaging into bacterio-phage phi29 capsids. PLoS Biol 5:e59
CrossRef Google scholar
[15]
Jimenez J, Santisteban A, Carazo JM, Carrascosa JL (1986) Computer graphic display method for visualizing three-dimen-sional biological structures. Science 232:1113–1115
CrossRef Google scholar
[16]
Lyubimov AY, Costa A, Bleichert F, Botchan MR, Berger JM (2012) ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukary-ote. Proc Natl Acad Sci USA 109:11999–12004
CrossRef Google scholar
[17]
Martin A, Baker TA, Sauer RT (2005) Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 437:1115–1120
CrossRef Google scholar
[18]
Pi F, Vieweger M, Zhao Z, Wang S, Guo P (2016a) Discovery of a new method for potent drug development using power function of stoichiometry of homomeric biocomplexes or biological nanomo-tors. Expert Opin Drug Deliv 13:23–36
CrossRef Google scholar
[19]
Pi F, Zhao Z, Chelikani V, Yoder K, Kvaratskhelia M, Guo P (2016b) Development of potent antiviral drugs inspired by viral hexameric DNA-packaging motors with revolving mechanism. J Virol 90:8036–8046
CrossRef Google scholar
[20]
Puchades C, Rampello AJ, Shin M, Giuliano CJ, Wiseman RL, Glynn SE, Lander GC (2017) Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Science 358:eaao0464
CrossRef Google scholar
[21]
Schwartz C, De Donatis GM, Zhang H, Fang H, Guo P (2013) Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Virology 443:28–39
CrossRef Google scholar
[22]
Shu D, Pi F, Wang C, Zhang P, Guo P (2015) New approach to develop ultra-high inhibitory drug using the power function of the stoichiometry of the targeted nanomachine or biocomplex. Nanomedicine 10:1881–1897
CrossRef Google scholar
[23]
Soultanas P, Wigley DB (2001) Unwinding the ‘Gordian knot’ of helicase action. Trends Biochem Sci 26:47–54
CrossRef Google scholar
[24]
Su M, Guo EZ, Ding X, Li Y, Tarrasch JT, Brooks CL 3rd, Xu Z, Skiniotis G (2017) Mechanism of Vps4 hexamer function revealed by cryo-EM. Sci Adv 3:e1700325
CrossRef Google scholar
[25]
Sun S, Li L, Yang F, Wang X, Fan F, Yang M, Chen C, Li X, Wang HW, Sui SF (2017) Cryo-EM structures of the ATP-bound Vps 4 (E233Q) hexamer and its complex with Vta1 at near-atomic resolution. Nat Commun 8:16064
CrossRef Google scholar
[26]
Wang N, Zhao D, Wang J, Zhang Y, Wang M, Gao Y, Li F, Wang J, Bu Z, Rao Z (2019) Architecture of African swine fever virus and implications for viral assembly. Science 366:640–644
CrossRef Google scholar
[27]
Wang N, Chen W, Zhu L, Feng R, Wang J, Zhu D, Zhang X, Liu H, Rao Z, Wang X (2020) Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein Cell. https://doi.org/10.1007/s13238-020-00711-z
CrossRef Google scholar
[28]
Yang Y, Yang P, Wang N, Zhu L, Zeng Y, Zhou ZH, Rao Z, Wang X (2020) Architecture of the herpesvirus genome-packaging com-plex and implications for DNA translocation. Protein Cell. https://doi.org/10.1007/s13238-020-00710-0
CrossRef Google scholar
[29]
Yuan S, Wang J, Zhu D, Wang N, Gao Q, Chen W, Tang H, Wang J, Zhang X, Liu H (2018) Cryo-EM structure of a herpesvirus capsid at 31 A. Science 360:eaao7283
CrossRef Google scholar
[30]
Zehr E, Szyk A, Piszczek G, Szczesna E, Zuo X, Roll-Mecak A (2017) Katanin spiral and ring structures shed light on power stroke for microtubule severing. Nat Struct Mol Biol 24:717–725
CrossRef Google scholar
[31]
Zhao Z, Khisamutdinov E, Schwartz C, Guo P (2013) Mechanism of one-way traffic of hexameric phi29 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution. ACS Nano 7:4082–4092
CrossRef Google scholar
[32]
Zhao Z, De-Donatis GM, Schwartz C, Fang H, Li J, Guo P (2016) An arginine finger regulates the sequential action of asymmetrical hexameric ATPase in the double-stranded DNA translocation motor. Mol Cell Biol 36:2514–2523
CrossRef Google scholar
[33]
Zhu L, Sun Y, Fan J, Zhu B, Cao L, Gao Q, Zhang Y, Liu H, Rao Z, Wang X (2018) Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating. Nat Commun 9:4985
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(642 KB)

Accesses

Citations

Detail

Sections
Recommended

/