Structures of a P4-ATPase lipid flippase in lipid bilayers

Yilin He, Jinkun Xu, Xiaofei Wu, Long Li

PDF(1427 KB)
PDF(1427 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (6) : 458-463. DOI: 10.1007/s13238-020-00712-y
LETTER
LETTER

Structures of a P4-ATPase lipid flippase in lipid bilayers

Author information +
History +

Cite this article

Download citation ▾
Yilin He, Jinkun Xu, Xiaofei Wu, Long Li. Structures of a P4-ATPase lipid flippase in lipid bilayers. Protein Cell, 2020, 11(6): 458‒463 https://doi.org/10.1007/s13238-020-00712-y

References

[1]
Baldridge RD, Graham TR (2013) Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases. Proc Natl Acad Sci USA 110:E358–367
CrossRef Google scholar
[2]
Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856
CrossRef Google scholar
[3]
Bryde S, Hennrich H, Verhulst PM, Devaux PF, Lenoir G, Holthuis JC (2010) CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. J Biol Chem 285:40562–40572
CrossRef Google scholar
[4]
Feng S, Dang S, Han TW, Ye W, Jin P, Cheng T, Li J, Jan YN, Jan LY, Cheng Y (2019) Cryo-EM studies of TMEM16F calciumactivated ion channel suggest features important for lipid scrambling. Cell Rep 28:567–579
CrossRef Google scholar
[5]
Hiraizumi M, Yamashita K, Nishizawa T, Nureki O (2019) Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science 365:1149–1155
CrossRef Google scholar
[6]
Jensen MS, Costa SR, Duelli AS, Andersen PA, Poulsen LR, Stanchev LD, Gourdon P, Palmgren M, Günther Pomorski T, López-Marqués RL (2017) Phospholipid flipping involves a central cavity in P4 ATPases. Sci Rep 7:17621
CrossRef Google scholar
[7]
Klomp LW, Vargas JC, van Mil SW, Pawlikowska L, Strautnieks SS, van Eijk MJ, Juijn JA, Pabón-Peña C, Smith LB, DeYoung JA (2004) Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40:27–38
CrossRef Google scholar
[8]
Lu S, Huang W, Wang Q, Shen Q, Li S, Nussinov R, Zhang J (2014) The structural basis of ATP as an allosteric modulator. PLoS Comput Biol 10(9):e1003831
CrossRef Google scholar
[9]
Radji M, Kim JM, Togan T, Yoshikawa H, Shirahige K (2001) The cloning and characterization of the CDC50 gene family in Saccharomyces cerevisiae. Yeast 18:195–205
CrossRef Google scholar
[10]
Roland BP, Naito T, Best JT, Arnaiz-Yépez C, Takatsu H, Yu RJ, Shin HW, Graham TR (2019) Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J Biol Chem 294:1794–1806
CrossRef Google scholar
[11]
Timcenko M, Lyons JA, Januliene D, Ulstrup JJ, Dieudonné T, Montigny C, Ash MR, Karlsen JL, Boesen T, Kühlbrandt W (2019) Structure and autoregulation of a P4-ATPase lipid flippase. Nature 571:366–370
CrossRef Google scholar
[12]
van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124
CrossRef Google scholar
[13]
Vestergaard AL, Coleman JA, Lemmin T, Mikkelsen SA, Molday LL, Vilsen B, Molday RS, Dal Peraro M, Andersen JP (2014) Critical roles of isoleucine-364 and adjacent residues in a hydrophobic gate control of phospholipid transport by the mammalian P4-ATPase ATP8A2. Proc Natl Acad Sci USA 111:E1334–1343
CrossRef Google scholar
[14]
Zhou X, Graham TR (2009) Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc Natl Acad Sci USA 106:16586–16591
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s) 2020
AI Summary AI Mindmap
PDF(1427 KB)

Accesses

Citations

Detail

Sections
Recommended

/