Recent advances in CRISPR research

Baohui Chen, Yuyu Niu, Haoyi Wang, Kejian Wang, Hui Yang, Wei Li

PDF(206 KB)
PDF(206 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (11) : 786-791. DOI: 10.1007/s13238-020-00704-y
CURRENT ADVANCES
CURRENT ADVANCES

Recent advances in CRISPR research

Author information +
History +

Cite this article

Download citation ▾
Baohui Chen, Yuyu Niu, Haoyi Wang, Kejian Wang, Hui Yang, Wei Li. Recent advances in CRISPR research. Protein Cell, 2020, 11(11): 786‒791 https://doi.org/10.1007/s13238-020-00704-y

References

[1]
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284
CrossRef Google scholar
[2]
Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F (2019) A cytosine deaminase for programmable single-base RNA editing. Science 365:382–386
CrossRef Google scholar
[3]
Allergan (2019) Single ascending dose study in participants with LCA10. ClinicalTrial.gov Identifier: NCT03872479. (clinicaltrials.-gov/ct2/show/NCT03872479)
[4]
Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou TR, Massey C, Shelton JM (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362:86–91
CrossRef Google scholar
[5]
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157
CrossRef Google scholar
[6]
Cameron P, Coons MM, Klompe SE, Lied AM, Smith SC, Vidal B, Donohoue PD, Rotstein T, Kohrs BW, Nyer DB (2019) Harnessing type I CRISPR-Cas systems for genome engineering in human cells. Nat Biotechnol 37(12):1471–1477
CrossRef Google scholar
[7]
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491
CrossRef Google scholar
[8]
Chen B, Guan J, Huang B (2016a) Imaging Specific genomic DNA in living cells. Annu Rev Biophys 45:1–23
CrossRef Google scholar
[9]
Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim WA, Huang B (2016b) Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res 44:e75
CrossRef Google scholar
[10]
Chen B, Zou W, Xu H, Liang Y, Huang B (2018) Efficient labeling and imaging of protein-coding genes in living cells using CRISPRTag. Nat Commun 9:5065
CrossRef Google scholar
[11]
Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016) Casilio: a versatile CRISPR-Cas9Pumilio hybrid for gene regulation and genomic labeling. Cell Res 26:254–257
CrossRef Google scholar
[12]
Chinese PLA General Hospital (2018) Study of PD-1 gene-knocked out mesothelin-directed CAR-T cells with the conditioning of PC in mesothelin positive multiple solid tumors. Identifier: NCT03747965.
[13]
Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, Freddolino PL, Ke A, Zhang Y (2019) Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol Cell 74(5):936–950
CrossRef Google scholar
[14]
Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette MF, Puchta H, Houben A (2017) Live-cell CRISPR imaging in plants reveals dynamic telomere movements. Plant J 91:565–573
CrossRef Google scholar
[15]
Duan J, Lu G, Hong Y, Hu Q, Mai X, Guo J, Si X, Wang F, Zhang Y (2018) Live imaging and tracking of genome regions in CRISPR/ dCas9 knock-in mice. Genome Biol 19:192
CrossRef Google scholar
[16]
Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song CQ, Cao Y, Gallant J, Xue W, Rivera-Perez JA (2018) A compact, highaccuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell 73(4):714–726
CrossRef Google scholar
[17]
Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y, Mazzoni EO, Skok JA (2016) CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun 7:11707
CrossRef Google scholar
[18]
Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, Hu YJ, Hu JH, Thompson DB, Shu Y (2018) Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553:217–221
CrossRef Google scholar
[19]
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471
CrossRef Google scholar
[20]
Grünewald J, Zhou R, Iyer S, Lareau CA, Garcia SP, Aryee MJ, Keith Joung J (2019) CRISPR adenine and cytosine base editors with reduced RNA off-target activities. bioRxiv. https://doi.org/10.1101/631721
CrossRef Google scholar
[21]
Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, Wysocka J (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055
CrossRef Google scholar
[22]
Han D, Hong Y, Mai X, Hu Q, Lu G, Duan J, Xu J, Si X, Zhang Y (2019) Systematical study of the mechanistic factors regulating genome dynamics in vivo by CRISPRsie. J Mol Cell Biol 11:1018–1020
CrossRef Google scholar
[23]
Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu JL, Zhang F (2019) Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364:292–295
CrossRef Google scholar
[24]
Karvelis T, Bigelyte G, Young JK, Hou Z, Zedaveinyte R, Pociute K, Silanskas A, Venclovas Č, Siksnys V (2019) PAM recognition by miniature CRISPR-Cas14 triggers programmable doublestranded DNA cleavage. bioRxiv. https://doi.org/10.1101/654897
CrossRef Google scholar
[25]
Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37:287–292
CrossRef Google scholar
[26]
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91–95
CrossRef Google scholar
[27]
Kim D, Lim K, Kim ST, Yoon SH, Kim K, Ryu SM, Kim JS (2017) Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 35:475–480
CrossRef Google scholar
[28]
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571:219–225
CrossRef Google scholar
[29]
Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–826
CrossRef Google scholar
[30]
Knight SC, Tjian R, Doudna JA (2018) Genomes in focus: development and applications of CRISPR-Cas9 imaging technologies. Angew Chem Int Ed Engl 57:4329–4337
CrossRef Google scholar
[31]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
CrossRef Google scholar
[32]
Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78
CrossRef Google scholar
[33]
Kwon C-T, Heo J, Lemmon ZH, Capua Y, Hutton SF, Van Eck J, Park SJ, Lippman ZB (2019) Rapid customization of Solanaceae fruit crops for urban agriculture. Nat Biotechnol 38:182–188
CrossRef Google scholar
[34]
Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172(881–887):e887
CrossRef Google scholar
[35]
Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, Wang D (2019a) Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J 18:316–318
CrossRef Google scholar
[36]
Liu J-J, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB (2019b) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566:218–223
CrossRef Google scholar
[37]
Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016a) CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 214:529–537
CrossRef Google scholar
[38]
Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016b) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528–530
CrossRef Google scholar
[39]
Ma H, Tu LC, Naseri A, Chung YC, Grunwald D, Zhang S, Pederson T (2018) CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 15:928–931
CrossRef Google scholar
[40]
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P (2019) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83
CrossRef Google scholar
[41]
Mao S, Ying Y, Wu X, Krueger CJ, Chen AK (2019) CRISPR/dualFRET molecular beacon for sensitive live-cell imaging of nonrepetitive genomic loci. Nucleic Acids Res 47:e131
CrossRef Google scholar
[42]
Merkle T, Merz S, Reautschnig P, Blaha A, Li Q, Vogel P, Wettengel J, Li JB, Stafforst T (2019) Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 37:133–138
CrossRef Google scholar
[43]
Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, Xu H, Sasakawa N, Naito Y, Nakada S (2019) CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun 10:5302
CrossRef Google scholar
[44]
Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA Tracking in live cells with CRISPR/Cas9. Cell 165:488–496
CrossRef Google scholar
[45]
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH (2019) Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 25:427–432
CrossRef Google scholar
[46]
Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of lowand non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725
CrossRef Google scholar
[47]
Qiu PY, Jiang J, Liu Z, Cai YJ, Huang T, Wang Y, Liu QM, Nie YH, Liu F, Cheng JM (2019) BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. Natl Sci Rev 6:87–100
CrossRef Google scholar
[48]
Qu L, Yi Z, Zhu S, Wang C, Cao Z, Zhou Z, Yuan P, Yu Y, Tian F, Liu Z (2019) Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol 37:1059–1069
CrossRef Google scholar
[49]
Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19 (12):770–780
CrossRef Google scholar
[50]
Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016) Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44:e86
CrossRef Google scholar
[51]
Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019a) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10:1–8
CrossRef Google scholar
[52]
Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F (2019b) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365:48–53
CrossRef Google scholar
[53]
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646
CrossRef Google scholar
[54]
Teng F, Li J, Cui T, Xu K, Guo L, Gao Q, Feng G, Chen C, Han D, Zhou Q (2019) Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol 20:1–6
CrossRef Google scholar
[55]
Vertex (2018a) A safety and efficacy study evaluating CTX001 in subjects with severe sickle cell disease. ClinicalTrial.gov Identi fier: NCT03745287. (clinicaltrials.gov/ct2/show/NCT03745287)
[56]
Vertex (2018b) A safety and efficacy study evaluating CTX001 in subjects with transfusion-dependent β-thalassemia. ClinicalTrial. gov Identifier: NCT03655678. (clinicaltrials.gov/ct2/show/ NCT03655678)
[57]
Wang S, Su JH, Zhang F, Zhuang X (2016) An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep 6:26857
CrossRef Google scholar
[58]
Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019a) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12:597–602
CrossRef Google scholar
[59]
Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R (2019b) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37:283–286
CrossRef Google scholar
[60]
Wang H, Nakamura M, Abbott TR, Zhao D, Luo K, Yu C, Nguyen CM, Lo A, Daley TP, La Russa M (2019c) CRISPR-mediated live imaging of genome editing and transcription. Science 365:1301–1305
CrossRef Google scholar
[61]
Wu X, Mao S, Ying Y, Krueger CJ, Chen AK (2019) Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR based Platforms. Genom Proteom Bioinform 17:119–128
CrossRef Google scholar
[62]
Xue Y, Acar M (2018) Live-cell imaging of chromatin condensation dynamics by CRISPR. iScience 4:216–235
CrossRef Google scholar
[63]
Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C (2018) A Huntingtin Knockin PIG model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173(989–1002):e1013
CrossRef Google scholar
[64]
Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong S, Makarova KS, Koonin EV (2019) Functionally diverse type V CRISPR-Cas systems. Science 363:88–91
CrossRef Google scholar
[65]
Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF, Wu H, Carmichael GG, Chen LL (2019) Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell 76(981–997):e987
CrossRef Google scholar
[66]
Ye H, Rong Z, Lin Y (2017) Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8:853–855
CrossRef Google scholar
[67]
Zhang F (2019) Development of CRISPR-Cas systems for genome editing and beyond. Q Rev Biophys 52:e6
CrossRef Google scholar
[68]
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
CrossRef Google scholar
[69]
Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, Chen K, Li J, Jiang L, Gao C (2019) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5:480–485
CrossRef Google scholar
[70]
Zhong Y, Liu C, Qi X, Jiao Y, Wang D, Wang Y, Liu Z, Chen C, Chen B, Tian X (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5:575–580
CrossRef Google scholar
[71]
Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, Xie XS (2017) Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res 27:298–301
CrossRef Google scholar
[72]
Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, Han L, Wei Y, Hu X, Zeng R (2019a) Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571:275–278
CrossRef Google scholar
[73]
Zhou Y, Sharma J, Ke Q, Landman R, Yuan JL, Chen H, Hayden DS, Fisher JW, Jiang MQ, Menegas W (2019b) Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570:326–331
CrossRef Google scholar
[74]
Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(206 KB)

Accesses

Citations

Detail

Sections
Recommended

/