Recent advances in CRISPR research
Baohui Chen, Yuyu Niu, Haoyi Wang, Kejian Wang, Hui Yang, Wei Li
Recent advances in CRISPR research
[1] |
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A
CrossRef
Google scholar
|
[2] |
Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F (2019) A cytosine deaminase for programmable single-base RNA editing. Science 365:382–386
CrossRef
Google scholar
|
[3] |
Allergan (2019) Single ascending dose study in participants with LCA10. ClinicalTrial.gov Identifier: NCT03872479. (clinicaltrials.-gov/ct2/show/NCT03872479)
|
[4] |
Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou TR, Massey C, Shelton JM
CrossRef
Google scholar
|
[5] |
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A
CrossRef
Google scholar
|
[6] |
Cameron P, Coons MM, Klompe SE, Lied AM, Smith SC, Vidal B, Donohoue PD, Rotstein T, Kohrs BW, Nyer DB
CrossRef
Google scholar
|
[7] |
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS
CrossRef
Google scholar
|
[8] |
Chen B, Guan J, Huang B (2016a) Imaging Specific genomic DNA in living cells. Annu Rev Biophys 45:1–23
CrossRef
Google scholar
|
[9] |
Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim WA, Huang B (2016b) Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res 44:e75
CrossRef
Google scholar
|
[10] |
Chen B, Zou W, Xu H, Liang Y, Huang B (2018) Efficient labeling and imaging of protein-coding genes in living cells using CRISPRTag. Nat Commun 9:5065
CrossRef
Google scholar
|
[11] |
Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016) Casilio: a versatile CRISPR-Cas9Pumilio hybrid for gene regulation and genomic labeling. Cell Res 26:254–257
CrossRef
Google scholar
|
[12] |
Chinese PLA General Hospital (2018) Study of PD-1 gene-knocked out mesothelin-directed CAR-T cells with the conditioning of PC in mesothelin positive multiple solid tumors. Identifier: NCT03747965.
|
[13] |
Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, Freddolino PL, Ke A, Zhang Y (2019) Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol Cell 74(5):936–950
CrossRef
Google scholar
|
[14] |
Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette MF, Puchta H, Houben A (2017) Live-cell CRISPR imaging in plants reveals dynamic telomere movements. Plant J 91:565–573
CrossRef
Google scholar
|
[15] |
Duan J, Lu G, Hong Y, Hu Q, Mai X, Guo J, Si X, Wang F, Zhang Y (2018) Live imaging and tracking of genome regions in CRISPR/ dCas9 knock-in mice. Genome Biol 19:192
CrossRef
Google scholar
|
[16] |
Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song CQ, Cao Y, Gallant J, Xue W, Rivera-Perez JA
CrossRef
Google scholar
|
[17] |
Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y, Mazzoni EO, Skok JA (2016) CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun 7:11707
CrossRef
Google scholar
|
[18] |
Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, Hu YJ, Hu JH, Thompson DB, Shu Y
CrossRef
Google scholar
|
[19] |
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471
CrossRef
Google scholar
|
[20] |
Grünewald J, Zhou R, Iyer S, Lareau CA, Garcia SP, Aryee MJ, Keith Joung J (2019) CRISPR adenine and cytosine base editors with reduced RNA off-target activities. bioRxiv.
CrossRef
Google scholar
|
[21] |
Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, Wysocka J (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055
CrossRef
Google scholar
|
[22] |
Han D, Hong Y, Mai X, Hu Q, Lu G, Duan J, Xu J, Si X, Zhang Y (2019) Systematical study of the mechanistic factors regulating genome dynamics in vivo by CRISPRsie. J Mol Cell Biol 11:1018–1020
CrossRef
Google scholar
|
[23] |
Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu JL, Zhang F
CrossRef
Google scholar
|
[24] |
Karvelis T, Bigelyte G, Young JK, Hou Z, Zedaveinyte R, Pociute K, Silanskas A, Venclovas Č, Siksnys V (2019) PAM recognition by miniature CRISPR-Cas14 triggers programmable doublestranded DNA cleavage. bioRxiv.
CrossRef
Google scholar
|
[25] |
Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E
CrossRef
Google scholar
|
[26] |
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91–95
CrossRef
Google scholar
|
[27] |
Kim D, Lim K, Kim ST, Yoon SH, Kim K, Ryu SM, Kim JS (2017) Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 35:475–480
CrossRef
Google scholar
|
[28] |
Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571:219–225
CrossRef
Google scholar
|
[29] |
Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M
CrossRef
Google scholar
|
[30] |
Knight SC, Tjian R, Doudna JA (2018) Genomes in focus: development and applications of CRISPR-Cas9 imaging technologies. Angew Chem Int Ed Engl 57:4329–4337
CrossRef
Google scholar
|
[31] |
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
CrossRef
Google scholar
|
[32] |
Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78
CrossRef
Google scholar
|
[33] |
Kwon C-T, Heo J, Lemmon ZH, Capua Y, Hutton SF, Van Eck J, Park SJ, Lippman ZB (2019) Rapid customization of Solanaceae fruit crops for urban agriculture. Nat Biotechnol 38:182–188
CrossRef
Google scholar
|
[34] |
Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M
CrossRef
Google scholar
|
[35] |
Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, Wang D
CrossRef
Google scholar
|
[36] |
Liu J-J, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB
CrossRef
Google scholar
|
[37] |
Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016a) CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 214:529–537
CrossRef
Google scholar
|
[38] |
Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016b) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528–530
CrossRef
Google scholar
|
[39] |
Ma H, Tu LC, Naseri A, Chung YC, Grunwald D, Zhang S, Pederson T (2018) CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 15:928–931
CrossRef
Google scholar
|
[40] |
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P
CrossRef
Google scholar
|
[41] |
Mao S, Ying Y, Wu X, Krueger CJ, Chen AK (2019) CRISPR/dualFRET molecular beacon for sensitive live-cell imaging of nonrepetitive genomic loci. Nucleic Acids Res 47:e131
CrossRef
Google scholar
|
[42] |
Merkle T, Merz S, Reautschnig P, Blaha A, Li Q, Vogel P, Wettengel J, Li JB, Stafforst T (2019) Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 37:133–138
CrossRef
Google scholar
|
[43] |
Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, Xu H, Sasakawa N, Naito Y, Nakada S
CrossRef
Google scholar
|
[44] |
Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA Tracking in live cells with CRISPR/Cas9. Cell 165:488–496
CrossRef
Google scholar
|
[45] |
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH
CrossRef
Google scholar
|
[46] |
Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of lowand non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725
CrossRef
Google scholar
|
[47] |
Qiu PY, Jiang J, Liu Z, Cai YJ, Huang T, Wang Y, Liu QM, Nie YH, Liu F, Cheng JM
CrossRef
Google scholar
|
[48] |
Qu L, Yi Z, Zhu S, Wang C, Cao Z, Zhou Z, Yuan P, Yu Y, Tian F, Liu Z
CrossRef
Google scholar
|
[49] |
Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19 (12):770–780
CrossRef
Google scholar
|
[50] |
Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016) Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44:e86
CrossRef
Google scholar
|
[51] |
Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019a) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10:1–8
CrossRef
Google scholar
|
[52] |
Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F (2019b) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365:48–53
CrossRef
Google scholar
|
[53] |
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646
CrossRef
Google scholar
|
[54] |
Teng F, Li J, Cui T, Xu K, Guo L, Gao Q, Feng G, Chen C, Han D, Zhou Q
CrossRef
Google scholar
|
[55] |
Vertex (2018a) A safety and efficacy study evaluating CTX001 in subjects with severe sickle cell disease. ClinicalTrial.gov Identi fier: NCT03745287. (clinicaltrials.gov/ct2/show/NCT03745287)
|
[56] |
Vertex (2018b) A safety and efficacy study evaluating CTX001 in subjects with transfusion-dependent β-thalassemia. ClinicalTrial. gov Identifier: NCT03655678. (clinicaltrials.gov/ct2/show/ NCT03655678)
|
[57] |
Wang S, Su JH, Zhang F, Zhuang X (2016) An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep 6:26857
CrossRef
Google scholar
|
[58] |
Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019a) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12:597–602
CrossRef
Google scholar
|
[59] |
Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R
CrossRef
Google scholar
|
[60] |
Wang H, Nakamura M, Abbott TR, Zhao D, Luo K, Yu C, Nguyen CM, Lo A, Daley TP, La Russa M
CrossRef
Google scholar
|
[61] |
Wu X, Mao S, Ying Y, Krueger CJ, Chen AK (2019) Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR based Platforms. Genom Proteom Bioinform 17:119–128
CrossRef
Google scholar
|
[62] |
Xue Y, Acar M (2018) Live-cell imaging of chromatin condensation dynamics by CRISPR. iScience 4:216–235
CrossRef
Google scholar
|
[63] |
Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C
CrossRef
Google scholar
|
[64] |
Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong S, Makarova KS, Koonin EV
CrossRef
Google scholar
|
[65] |
Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF, Wu H, Carmichael GG, Chen LL (2019) Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell 76(981–997):e987
CrossRef
Google scholar
|
[66] |
Ye H, Rong Z, Lin Y (2017) Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8:853–855
CrossRef
Google scholar
|
[67] |
Zhang F (2019) Development of CRISPR-Cas systems for genome editing and beyond. Q Rev Biophys 52:e6
CrossRef
Google scholar
|
[68] |
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z
CrossRef
Google scholar
|
[69] |
Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, Chen K, Li J, Jiang L, Gao C (2019) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5:480–485
CrossRef
Google scholar
|
[70] |
Zhong Y, Liu C, Qi X, Jiao Y, Wang D, Wang Y, Liu Z, Chen C, Chen B, Tian X
CrossRef
Google scholar
|
[71] |
Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, Xie XS (2017) Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res 27:298–301
CrossRef
Google scholar
|
[72] |
Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, Han L, Wei Y, Hu X, Zeng R
CrossRef
Google scholar
|
[73] |
Zhou Y, Sharma J, Ke Q, Landman R, Yuan JL, Chen H, Hayden DS, Fisher JW, Jiang MQ, Menegas W
CrossRef
Google scholar
|
[74] |
Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289
CrossRef
Google scholar
|
/
〈 | 〉 |