Primary cilia mediate Klf2-dependant Notch activation in regenerating heart
Xueyu Li, Qiang Lu, Yuanyuan Peng, Fang Geng, Xuelian Shao, Huili Zhou, Ying Cao, Ruilin Zhang
Primary cilia mediate Klf2-dependant Notch activation in regenerating heart
Unlike adult mammalian heart, zebrafish heart has a remarkable capacity to regenerate after injury. Previous study has shown Notch signaling activation in the endocardium is essential for regeneration of the myocardium and this activation is mediated by hemodynamic alteration after injury, however, the molecular mechanism has not been fully explored. In this study we demonstrated that blood flow change could be perceived and transmitted in a primary cilia dependent manner to control the hemodynamic responsive klf2 gene expression and subsequent activation of Notch signaling in the endocardium. First we showed that both homologues of human gene KLF2 in zebrafish, klf2a and klf2b, could respond to hemodynamic alteration and both were required for Notch signaling activation and heart regeneration. Further experiments indicated that the upregulation of klf2 gene expression was mediated by endocardial primary cilia. Overall, our findings reveal a novel aspect of mechanical shear stress signal in activating Notch pathway and regulating cardiac regeneration.
heart regeneration / hemodynamics / klf2 / Notch signaling / primary cilia
[1] |
Atkins GB, Jain MK (2007) Role of Kruppel-like transcription factors in endothelial biology. Circ Res 100(12):1686–1695
CrossRef
Google scholar
|
[2] |
Austin-Tse C,Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, Pathak N, Liu Y, Panizzi JR, Patel-King RS
CrossRef
Google scholar
|
[3] |
Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P (2017) Molecular sensors of blood flow in endothelial cells. Trends Mol Med 23(9):850–868
CrossRef
Google scholar
|
[4] |
Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong J-W, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23(4):465–472
CrossRef
Google scholar
|
[5] |
Clark BS, Cui S, Miesfeld JB, Klezovitch O, Vasioukhin V, Link BA (2012) Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity neurogenesis. Development 139(9):1599–1610
CrossRef
Google scholar
|
[6] |
Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S,Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60
CrossRef
Google scholar
|
[7] |
Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E,Pannekoek H, Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood 100(5):1689–1698
CrossRef
Google scholar
|
[8] |
Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE (2013) Primary cilia are specialized calcium signalling organelles. Nature 504(7479):311
CrossRef
Google scholar
|
[9] |
Egorova AD, Khedoe PP, Goumans MJ, Yoder BK, Nauli SM, ten Dijke P, Poelmann RE, Hierck BP (2011) Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ Res 108(9):1093–1101
CrossRef
Google scholar
|
[10] |
Espinha LC,Hoey DA, Fernandes PR, Rodrigues HC, Jacobs CR (2014) Oscillatory fluid flow influences primary cilia and microtubule mechanics. Cytoskeleton 71(7):435–445
CrossRef
Google scholar
|
[11] |
Felician G, Collesi C, Lusic M, Martinelli V,Ferro MD, Zentilin L, Zacchigna S, Giacca M (2014) Epigenetic modification at Notch responsive promoters blunts efficacy of inducing Notch pathway reactivation after myocardial infarction. Circ Res 115(7):636–641
CrossRef
Google scholar
|
[12] |
Goddard LM, Duchemin AL, Ramalingan H, Wu B, Chen M, Bamezai S, Yang J, Li L, Morley MP, Wang T
CrossRef
Google scholar
|
[13] |
Gálvez-Santisteban M, Chen D, Zhang R, Serrano R, Nguyen C,Zhao L,Nerb L,Masutani EM, Vermot J, Burns CG
CrossRef
Google scholar
|
[14] |
Heckel E,Boselli F, Roth S,Krudewig A, Belting H-G,Charvin G,Vermot J (2015) Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr Biol 25(10):1354–1361
CrossRef
Google scholar
|
[15] |
Jin S-W, Beis D, Mitchell T, Chen J-N, Stainier DY (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132(23):5199–5209
CrossRef
Google scholar
|
[16] |
Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JCI (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606
CrossRef
Google scholar
|
[17] |
Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y,Egnaczyk GF, Evans T,Macrae CA, Stainier DYR, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605
CrossRef
Google scholar
|
[18] |
Lee JS, Yu Q, Shin JT, Sebzda E, Bertozzi C, Chen M, Mericko P, Stadtfeld M, Zhou D,Cheng L
CrossRef
Google scholar
|
[19] |
Liu Z, Tu H, Kang Y, Xue Y, Ma D, Zhao C, Li H, Wang L, Liu F (2019) Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish. Nat Commun 10(1):1839
CrossRef
Google scholar
|
[20] |
Mandal A, Holowiecki A, Song YC,Waxman JS (2017) Wnt signaling balances specification of the cardiac and pharyngeal muscle fields. Mech Dev 143:32–41
CrossRef
Google scholar
|
[21] |
Munch J, Grivas D, Gonzalez-Rajal A, Torregrosa-Carrion R,de la Pompa JL (2017) Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 144(8):1425–1440
CrossRef
Google scholar
|
[22] |
Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X,Elia AEH, Lu W, Brown EM, Quinn SJ
CrossRef
Google scholar
|
[23] |
Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117(9):1161–1171
CrossRef
Google scholar
|
[24] |
Nemir M, Metrich M, Plaisance I, Lepore M, Cruchet S,Berthonneche C, Sarre A, Radtke F, Pedrazzini T (2014) The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J 35(32):2174–2185
CrossRef
Google scholar
|
[25] |
Nixon AM, Gunel M, Sumpio BE (2010) The critical role of hemodynamics in the development of cerebral vascular disease: a review. J Neurosurg 112(6):1240–1253
CrossRef
Google scholar
|
[26] |
Oates AC, Pratt SJ, Vail B, Yan Y, Ho RK, Johnson SL, Postlethwait JH, Zon LI (2001) The zebrafish klf gene family. Blood 98 (6):1792–1801
CrossRef
Google scholar
|
[27] |
Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20
CrossRef
Google scholar
|
[28] |
Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718
CrossRef
Google scholar
|
[29] |
Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190
CrossRef
Google scholar
|
[30] |
Rasouli SJ, El-Brolosy M, Tsedeke AT, Bensimon-Brito A, Ghanbari P, Maischein HM, Kuenne C, Stainier DY (2018) The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. eLife 7:e38889
CrossRef
Google scholar
|
[31] |
Raya A,Koth CM, Büscher D, Kawakami Y, Itoh T, Raya RM, Sternik G,Tsai H-J, Rodríguez-Esteban C, Izpisúa-Belmonte JC (2003) Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA 100(Suppl 1):11889–11895
CrossRef
Google scholar
|
[32] |
Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317 (5836):372–376
CrossRef
Google scholar
|
[33] |
Samsa LA, Givens C, Tzima E, Stainier DY, Qian L, Liu J (2015) Cardiac contraction activates endocardial Notch signaling to modulate chamber maturation in zebrafish. Development 142 (23):4080–4091
CrossRef
Google scholar
|
[34] |
Steed E, Faggianelli N, Roth S, Ramspacher C, Concordet J-P, Vermot J (2016) klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis. Nat Commun 7:11646
CrossRef
Google scholar
|
[35] |
Thygesen K, Alpert JS, White HD (2007) Universal definition of myocardial infarction. J Am Coll Cardiol 50(22):2173–2195
CrossRef
Google scholar
|
[36] |
Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D, Gharib M, Fraser SE (2009) Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7(11):e1000246
CrossRef
Google scholar
|
[37] |
Villalobos E, Criollo A, Schiattarella GG, Altamirano F, French KM, May HI, Jiang N, Nguyen NUN, Romero D, Roa JC
CrossRef
Google scholar
|
[38] |
Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY
CrossRef
Google scholar
|
[39] |
Zhao L, Ben-Yair R,Burns CE, Burns CG (2019) Endocardial Notch signaling promotes cardiomyocyte proliferation in the regenerating zebrafish heart through Wnt pathway antagonism. Cell Rep 26(3):546–554
CrossRef
Google scholar
|
[40] |
Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B,MacRae CA, Lee RT, Burns CG, Burns CE (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA 111(4):1403–1408
CrossRef
Google scholar
|
/
〈 | 〉 |