The role of telomere-binding modulators in pluripotent stem cells
Feng Li, Yuanlong Ge, Dan Liu, Zhou Songyang
The role of telomere-binding modulators in pluripotent stem cells
Pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs), ESCs derived by somatic cell nuclear transfer (ntESCs), and induced pluripotent stem cells (iPSCs) have unlimited capacity for self-renewal and pluripotency and can give rise to all types of somatic cells. In order to maintain their self-renewal and pluripotency, PSCs need to preserve their telomere length and homeostasis. In recent years, increasing studies have shown that telomere reprogramming is essential for stem cell pluripotency maintenance and its induced pluripotency process. Telomere-associated proteins are not only required for telomere maintenance in both stem cells, their extra-telomeric functions have also been found to be critical as well. Here, we will discuss how telomeres and telomere-associated factors participate and regulate the maintenance of stem cell pluripotency.
telomere / pluripotent stem cells / telomerase / ALT / shelterin/telosome complex
[1] |
Abreu E, Aritonovska E, Reichenbach P,Cristofari G, Culp B, Terns RM, Lingner J, Terns MP (2010) TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol 30:2971–2982
CrossRef
Google scholar
|
[2] |
Agarwal S, Loh YH, McLoughlin EM, Huang J, Park IH, Miller JD, Huo H, Okuka M, Dos Reis RM, Loewer S
CrossRef
Google scholar
|
[3] |
Aguado T, Gutierrez FJ, Aix E, Schneider RP, Giovinazzo G, Blasco MA, Flores I (2017) Telomere length defines the cardiomyocyte differentiation potency of mouse induced pluripotent stem cells. Stem Cells 35:362–373
CrossRef
Google scholar
|
[4] |
Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F, Tuder RM, Hogan BL, Mitzner W, Armanios M (2015) Telomere dysfunction causes alveolar stem cell failure. Proc Natl Acad Sci USA 112:5099–5104
CrossRef
Google scholar
|
[5] |
Armstrong L, Saretzki G, Peters H, Wappler I, Evans J, Hole N, von Zglinicki T, Lako M (2005) Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 23:516–529
CrossRef
Google scholar
|
[6] |
Bae NS, Baumann P (2007) A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell 26:323–334
CrossRef
Google scholar
|
[7] |
Baumann P, Cech TR (2001) Pot1, the putative telomere endbinding protein in fission yeast and humans. Science 292:1171–1175
CrossRef
Google scholar
|
[8] |
Bilaud T,Brun C, Ancelin K, Koering CE, Laroche T, Gilson E (1997) Telomeric localization of TRF2, a novel human telobox protein. Nature Genetics 17:236–239
CrossRef
Google scholar
|
[9] |
Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34
CrossRef
Google scholar
|
[10] |
Boue, S., Paramonov, I., Barrero, M.J., and Izpisua Belmonte , J.C. (2010). Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate? PLoS ONE 5.
CrossRef
Google scholar
|
[11] |
Cai Y,Sukhova GK, Wong HK, Xu A, Tergaonkar V, Vanhoutte PM, Tang EH (2015) Rap1 induces cytokine production in proinflammatory macrophages through NFkappaB signaling and is highly expressed in human atherosclerotic lesions. Cell Cycle (Georgetown, Tex) 14:3580–3592
CrossRef
Google scholar
|
[12] |
Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8:885–890
CrossRef
Google scholar
|
[13] |
Cerone MA, Londono-Vallejo JA, Bacchetti S (2001) Telomere maintenance by telomerase and by recombination can coexist in human cells. Hum Mol Genet 10:1945–1952
CrossRef
Google scholar
|
[14] |
Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11:319–330
CrossRef
Google scholar
|
[15] |
Chang FT, McGhie JD, Chan FL, Tang MC, Anderson MA, Mann JR, Andy Choo KH, Wong LH (2013) PML bodies provide an important platform for the maintenance of telomeric chromatin integrity in embryonic stem cells. Nucleic Acids Res 41:4447–4458
CrossRef
Google scholar
|
[16] |
Chen Y, Yang Y,van Overbeek M, Donigian JR, Baciu P, de Lange T, Lei M (2008) A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319:1092–1096
CrossRef
Google scholar
|
[17] |
Chen Y, Rai R, Zhou ZR, Kanoh J,Ribeyre C, Yang Y, Zheng H, Damay P, Wang F, Tsujii H
CrossRef
Google scholar
|
[18] |
Chen LY, Zhang Y, Zhang Q, Li H, Luo Z, Fang H, Kim SH, Qin L, Yotnda P, Xu J
CrossRef
Google scholar
|
[19] |
Chen H, Liu X, Zhu W, Chen H, Hu X, Jiang Z, Xu Y, Wang L, Zhou Y, Chen P
CrossRef
Google scholar
|
[20] |
Chiang YJ, Kim SH, Tessarollo L, Campisi J, Hodes RJ (2004) Telomere-associated protein TIN2 is essential for early embryonic development through a telomerase-independent pathway. Mol Cell Biol 24:6631–6634
CrossRef
Google scholar
|
[21] |
Churikov D, Wei C, Price CM (2006) Vertebrate POT1 restricts G-overhang length and prevents activation of a telomeric DNA damage checkpoint but is dispensable for overhang protection. Mol Cell Biol 26:6971–6982
CrossRef
Google scholar
|
[22] |
Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853
CrossRef
Google scholar
|
[23] |
Court R, Chapman L, Fairall L, Rhodes D (2005) How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep 6:39–45
CrossRef
Google scholar
|
[24] |
Dan J, Li M, Yang J, Li J, Okuka M, Ye X, Liu L (2013) Roles for Tbx3 in regulation of two-cell state and telomere elongation in mouse ES cells. Sci Rep 3:3492
CrossRef
Google scholar
|
[25] |
Dan J, Yang J, Liu Y, Xiao A, Liu L (2015) Roles for histone acetylation in regulation of telomere elongation and two-cell state in mouse ES cells. J Cell Physiol 230:2337–2344
CrossRef
Google scholar
|
[26] |
de Lange T (2018) Shelterin-mediated telomere protection. Annu Rev Genet 52:223–247
CrossRef
Google scholar
|
[27] |
Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448:1068–1071
CrossRef
Google scholar
|
[28] |
Deng T, Huang Y, Weng K, Lin S, Li Y, Shi G, Chen Y, Huang J, Liu D, Ma W
CrossRef
Google scholar
|
[29] |
Doksani Y, Wu JY, de Lange T, Zhuang X (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155:345–356
CrossRef
Google scholar
|
[30] |
El Mai M,Wagner KD, Michiels JF, Ambrosetti D, Borderie A, Destree S, Renault V, Djerbi N, Giraud-Panis MJ, Gilson E
CrossRef
Google scholar
|
[31] |
Falco G, Lee SL, Stanghellini I, Bassey UC, Hamatani T, Ko MS (2007) Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev Biol 307:539–550
CrossRef
Google scholar
|
[32] |
Grammatikakis I, Zhang P, Panda AC, Kim J, Maudsley S, Abdelmohsen K, Yang X, Martindale JL, Motino O, Hutchison ER
CrossRef
Google scholar
|
[33] |
Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337
CrossRef
Google scholar
|
[34] |
Griffith JD, Comeau L, Rosenfield S,Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514
CrossRef
Google scholar
|
[35] |
Guo X, Deng Y, Lin Y, Cosme-Blanco W, Chan S, He H, Yuan G, Brown EJ, Chang S (2007) Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. Embo J 26:4709–4719
CrossRef
Google scholar
|
[36] |
Han J, Yuan P, Yang H, Zhang J, Soh BS, Li P,Lim SL, Cao S, Tay J, Orlov YL
CrossRef
Google scholar
|
[37] |
He Q, Kim H, Huang R, Lu W, Tang M, Shi F, Yang D, Zhang X, Huang J, Liu D
CrossRef
Google scholar
|
[38] |
Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, Blasco MA (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18:2950–2960
CrossRef
Google scholar
|
[39] |
Hirata T, Amano T, Nakatake Y, Amano M, Piao Y, Hoang HG,Ko MS (2012) Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells. Sci Rep 2:208
CrossRef
Google scholar
|
[40] |
Hockemeyer D, Daniels JP, Takai H, de Lange T (2006) Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126:63–77
CrossRef
Google scholar
|
[41] |
Hoffmeyer K,Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R, Kemler R (2012) Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336:1549–1554
CrossRef
Google scholar
|
[42] |
Hosokawa K, MacArthur BD, Ikushima YM, Toyama H, Masuhiro Y, Hanazawa S, Suda T, Arai F (2017) The telomere binding protein Pot1 maintains haematopoietic stem cell activity with age. Nat Commun 8:804
CrossRef
Google scholar
|
[43] |
Houghtaling BR, Cuttonaro L, Chang W, Smith S (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14:1621–1631
CrossRef
Google scholar
|
[44] |
Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, Zuo B, Li M, Liang P, Ge WW
CrossRef
Google scholar
|
[45] |
Huang Y, Liang P, Liu D, Huang J, Songyang Z (2014) Telomere regulation in pluripotent stem cells. Protein Cell 5:194–202
CrossRef
Google scholar
|
[46] |
Ikeda H, Sone M, Yamanaka S, Yamamoto T (2017) Structural and spatial chromatin features at developmental gene loci in human pluripotent stem cells. Nat Commun 8:1616
CrossRef
Google scholar
|
[47] |
Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, Protopopov A, Cadinanos J
CrossRef
Google scholar
|
[48] |
Jiang J, Lv W, Ye X, Wang L, Zhang M, Yang H, Okuka M, Zhou C, Zhang X, Liu L
CrossRef
Google scholar
|
[49] |
Keegan CE, Hutz JE, Else T, Adamska M, Shah SP, Kent AE, Howes JM, Beamer WG, Hammer GD (2005) Urogenital and caudal dysgenesis in adrenocortical dysplasia (acd) mice is caused by a splicing mutation in a novel telomeric regulator. Hum Mol Genet 14:113–123
CrossRef
Google scholar
|
[50] |
Kim SH, Kaminker P,Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23:405–412
CrossRef
Google scholar
|
[51] |
Kim H, Lee OH, Xin H, Chen LY, Qin J, Chae HK, Lin SY, Safari A, Liu D, Songyang Z (2009) TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nat Struct Mol Biol 16:372–379
CrossRef
Google scholar
|
[52] |
Kim H, Li F, He Q, Deng T, Xu J, Jin F, Coarfa C, Putluri N, Liu D, Songyang Z (2017) Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells. Cell Discov 3:17034
CrossRef
Google scholar
|
[53] |
Kobayashi H, Kikyo N (2015) Epigenetic regulation of open chromatin in pluripotent stem cells. Transl Res 165:18–27
CrossRef
Google scholar
|
[54] |
Lewis PW, Elsaesser SJ, Noh KM,Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107:14075–14080
CrossRef
Google scholar
|
[55] |
Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101:471–483
CrossRef
Google scholar
|
[56] |
Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567
CrossRef
Google scholar
|
[57] |
Liu L (2017) Linking telomere regulation to stem cell pluripotency. Trends Genet 33:16–33
CrossRef
Google scholar
|
[58] |
Liu D, O’Connor MS, Qin J, Songyang Z (2004a) Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 279:51338–51342
CrossRef
Google scholar
|
[59] |
Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A, Qin J, Songyang Z (2004b) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6:673–680
CrossRef
Google scholar
|
[60] |
Liu L, Bailey SM, Okuka M, Munoz P, Li C,Zhou L, Wu C, Czerwiec E, Sandler L, Seyfang A
CrossRef
Google scholar
|
[61] |
Liu CC, Ma DL, Yan TD, Fan X, Poon Z, Poon LF, Goh SA, Rozen SG, Hwang WY, Tergaonkar V
CrossRef
Google scholar
|
[62] |
Lobanova A, She R, Pieraut S, Clapp C, Maximov A, Denchi EL (2017) Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons. Genes Dev 31:639–647
CrossRef
Google scholar
|
[63] |
Lu R, Yang A, Jin Y (2011) Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol Chem 286:8425–8436
CrossRef
Google scholar
|
[64] |
Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y (2014) Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 28:2103–2119
CrossRef
Google scholar
|
[65] |
Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4:141–154
CrossRef
Google scholar
|
[66] |
Marion RM, Lopez de Silanes I, Mosteiro L, Gamache B, Abad M, Guerra C, Megias D,Serrano M, Blasco MA (2017) Common telomere changes during in vivo reprogramming and early stages of tumorigenesis. Stem Cell Rep 8:460–475
CrossRef
Google scholar
|
[67] |
Martinez P,Thanasoula M, Carlos AR, Gomez-Lopez G, Tejera AM, Schoeftner S, Dominguez O, Pisano DG, Tarsounas M, Blasco MA (2010) Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol 12:768–780
CrossRef
Google scholar
|
[68] |
Martinez P, Gomez-Lopez G,Garcia F, Mercken E, Mitchell S, Flores JM, de Cabo R, Blasco MA (2013) RAP1 protects from obesity through its extratelomeric role regulating gene expression. Cell Rep 3:2059–2074
CrossRef
Google scholar
|
[69] |
Mendez-Bermudez A, Lototska L, Bauwens S, Giraud-Panis MJ, Croce O, Jamet K, Irizar A, Mowinckel M, Koundrioukoff S, Nottet N
CrossRef
Google scholar
|
[70] |
Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546
CrossRef
Google scholar
|
[71] |
Nakashima M, Nandakumar J,Sullivan KD, Espinosa JM, Cech TR (2013) Inhibition of telomerase recruitment and cancer cell death. J Biol Chem 288:33171–33180
CrossRef
Google scholar
|
[72] |
Nandakumar J,Bell CF, Weidenfeld I,Zaug AJ, Leinwand LA, Cech TR (2012) The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492:285–289
CrossRef
Google scholar
|
[73] |
Niida H, Shinkai Y, Hande MP, Matsumoto T, Takehara S, Tachibana M, Oshimura M, Lansdorp PM, Furuichi Y (2000) Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA. Mol Cell Biol 20:4115–4127
CrossRef
Google scholar
|
[74] |
O’Connor MS, Safari A, Liu D, Qin J, Songyang Z (2004) The human Rap1 protein complex and modulation of telomere length. J Biol Chem 279:28585–28591
CrossRef
Google scholar
|
[75] |
O’Connor MS, Safari A, Xin H, Liu D, Songyang Z (2006) A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci USA 103:11874–11879
CrossRef
Google scholar
|
[76] |
Orun O, Tiber PM, Serakinci N (2016) Partial knockdown of TRF2 increase radiosensitivity of human mesenchymal stem cells. Int J Biol Macromol 90:53–58
CrossRef
Google scholar
|
[77] |
Ovando-Roche P, Yu JS, Testori S, Ho C, Cui W (2014) TRF2- mediated stabilization of hREST4 is critical for the differentiation and maintenance of neural progenitors. Stem Cells 32:2111–2122
CrossRef
Google scholar
|
[78] |
Pfaff N, Lachmann N, Ackermann M, Kohlscheen S, Brendel C, Maetzig T, Niemann H, Antoniou MN, Grez M, Schambach A
CrossRef
Google scholar
|
[79] |
Pucci F, Gardano L, Harrington L (2013) Short telomeres in ESCs lead to unstable differentiation. Cell Stem Cell 12:479–486
CrossRef
Google scholar
|
[80] |
Rai R, Chen Y, Lei M, Chang S (2016) TRF2-RAP1 is required to protect telomeres from engaging in homologous recombinationmediated deletions and fusions. Nat Commun 7:10881
CrossRef
Google scholar
|
[81] |
Rivera T, Haggblom C, Cosconati S, Karlseder J (2017) A balance between elongation and trimming regulates telomere stability in stem cells. Nat Struct Mol Biol 24:30–39
CrossRef
Google scholar
|
[82] |
Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712
CrossRef
Google scholar
|
[83] |
Santos J,Pereira CF, Di-Gregorio A, Spruce T, Alder O, Rodriguez T, Azuara V, Merkenschlager M, Fisher AG (2010) Differences in the epigenetic and reprogramming properties of pluripotent and extra-embryonic stem cells implicate chromatin remodelling as an important early event in the developing mouse embryo. Epigenet Chromatin 3:1
CrossRef
Google scholar
|
[84] |
Schneider RP, Garrobo I,Foronda M, Palacios JA, Marion RM, Flores I, Ortega S, Blasco MA (2013) TRF1 is a stem cell marker and is essential for the generation of induced pluripotent stem cells. Nat Commun 4:1946
CrossRef
Google scholar
|
[85] |
Serakinci N, Mega Tiber POrun O(2018) Chromatin modifications of hTERT gene in hTERT-immortalized human mesenchymal stem cells upon exposure to radiation. Eur J Med Genet 61:288–293
CrossRef
Google scholar
|
[86] |
Sexton AN, Youmans DT, Collins K (2012) Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J Biol Chem 287:34455–34464
CrossRef
Google scholar
|
[87] |
Sexton AN, Regalado SG, Lai CS, Cost GJ, O’Neil CM, Urnov FD, Gregory PD, Jaenisch R, Collins K, Hockemeyer D (2014) Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes Dev 28:1885–1899
CrossRef
Google scholar
|
[88] |
Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103
CrossRef
Google scholar
|
[89] |
Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327:1657–1661
CrossRef
Google scholar
|
[90] |
Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3’ telomeric overhang. Embo J 20:5532–5540
CrossRef
Google scholar
|
[91] |
Stout GJ, Blasco MA (2009) Genetic dissection of the mechanisms underlying telomere-associated diseases: impact of the TRF2 telomeric protein on mouse epidermal stem cells. Dis Model Mech 2:139–156
CrossRef
Google scholar
|
[92] |
Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44:647–659
CrossRef
Google scholar
|
[93] |
Tejera AM, Stagno d’Alcontres M, Thanasoula M, Marion RM, Martinez P, Liao C, Flores JM, Tarsounas M, Blasco MA (2010) TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev Cell 18:775–789
CrossRef
Google scholar
|
[94] |
Teo H, Ghosh S, Luesch H, Ghosh A, Wong ET, Malik N, Orth A, de Jesus P, Perry AS, Oliver JD
CrossRef
Google scholar
|
[95] |
van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385:740–743
CrossRef
Google scholar
|
[96] |
van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413
CrossRef
Google scholar
|
[97] |
Varela E, Schneider RP, Ortega S, Blasco MA (2011) Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells. Proc Natl Acad Sci USA 108:15207–15212
CrossRef
Google scholar
|
[98] |
Wang Y, Erdmann N, Giannone RJ, Wu J, Gomez M, Liu Y (2005) An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proc Natl Acad Sci USA 102:10256–10260
CrossRef
Google scholar
|
[99] |
Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR, Lei M (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–510
CrossRef
Google scholar
|
[100] |
Wang Y, Shen MF, Chang S (2011) Essential roles for Pot1b in HSC self-renewal and survival. Blood 118:6068–6077
CrossRef
Google scholar
|
[101] |
Wang F,Yin Y, Ye X, Liu K, Zhu H, Wang L, Chiourea M, Okuka M, Ji G, Dan J
CrossRef
Google scholar
|
[102] |
Wang H, Zhang K, Liu Y, Fu Y, Gao S, Gong P, Wang H, Zhou Z, Zeng M, Wu Z
CrossRef
Google scholar
|
[103] |
Wong LH, Ren H, Williams E, McGhie J, Ahn S, Sim M, Tam A, Earle E, Anderson MA, Mann J
CrossRef
Google scholar
|
[104] |
Wong CW, Hou PS, Tseng SF, Chien CL, Wu KJ, Chen HF, Ho HN, Kyo S, Teng SC (2010a) Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 28:1510–1517
CrossRef
Google scholar
|
[105] |
Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, George AJ, Morgan KA, Mann JR, Choo KH (2010b) ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 20:351–360
CrossRef
Google scholar
|
[106] |
Xin H,Liu D, Wan M, Safari A, Kim H,Sun W,O’Connor MS, Songyang Z (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445:559–562
CrossRef
Google scholar
|
[107] |
Xin H, Liu D, Songyang Z (2008) The telosome/shelterin complex and its functions. Genome Biol 9:232
CrossRef
Google scholar
|
[108] |
Yang C, Przyborski S, Cooke MJ, Zhang X, Stewart R, Anyfantis G,Atkinson SP, Saretzki G, Armstrong L, Lako M(2008) A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells 26:850–863
CrossRef
Google scholar
|
[109] |
Yang D, He Q, Kim H, Ma W, Songyang Z (2011) TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase. J Biol Chem 286:23022–23030
CrossRef
Google scholar
|
[110] |
Ye JZ, Donigian JR, van Overbeek M, Loayza D, Luo Y,Krutchinsky AN, Chait BT, de Lange T (2004a) TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem 279:47264–47271
CrossRef
Google scholar
|
[111] |
Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, de Lange T (2004b) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18:1649–1654
CrossRef
Google scholar
|
[112] |
Zalzman M, Falco G,Sharova LV, Nishiyama A, Thomas M, Lee SL, Stagg CA, Hoang HG, Yang HT, Indig FE
CrossRef
Google scholar
|
[113] |
Zeng S, Liu L, Sun Y, Xie P, Hu L, Yuan D, Chen D, Ouyang Q, Lin G, Lu G (2014) Telomerase-mediated telomere elongation from human blastocysts to embryonic stem cells. J Cell Sci 127:752–762
CrossRef
Google scholar
|
[114] |
Zhang P, Pazin MJ, Schwartz CM, Becker KG, Wersto RP, Dilley CM, Mattson MP (2008) Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol 18:1489–1494
CrossRef
Google scholar
|
[115] |
Zhang P, Abdelmohsen K, Liu Y, Tominaga-Yamanaka K, Yoon JH, Ioannis G, Martindale JL, Zhang Y, Becker KG, Yang IH
CrossRef
Google scholar
|
[116] |
Zhang Y, Chiu S, Liang X, Gao F, Zhang Z, Liao S, Liang Y, Chai YH, Low DJ, Tse HF
CrossRef
Google scholar
|
[117] |
Zhong FL, Batista LF, Freund A, Pech MF, Venteicher AS, Artandi SE (2012) TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150:481–494
CrossRef
Google scholar
|
/
〈 | 〉 |