CRISPR-mediated gene editing to rescue haploinsufficient obesity syndrome

Zhifeng Wang, Liu Yang, Shen Qu, Chao Zhang

PDF(321 KB)
PDF(321 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (10) : 705-708. DOI: 10.1007/s13238-019-0635-y
COMMENTARY
COMMENTARY

CRISPR-mediated gene editing to rescue haploinsufficient obesity syndrome

Author information +
History +

Cite this article

Download citation ▾
Zhifeng Wang, Liu Yang, Shen Qu, Chao Zhang. CRISPR-mediated gene editing to rescue haploinsufficient obesity syndrome. Protein Cell, 2019, 10(10): 705‒708 https://doi.org/10.1007/s13238-019-0635-y

References

[1]
Akcakaya P, Bobbin ML, Guo JA, Malagon-Lopez J, Clement K, Garcia SP, Fellows MD, Porritt MJ, Firth MA, Carreras A (2018) In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561:416–419
CrossRef Google scholar
[2]
Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou TR, Massey C, Shelton JM (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362:86–91
CrossRef Google scholar
[3]
Argyropoulos G, Brown AM, Willi SM, Zhu J, He Y, Reitman M, Gevao SM, Spruill I, Garvey WT (1998) Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. J Clin Investig 102:1345–1351
CrossRef Google scholar
[4]
Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, Ramanathan V, Strochlic DE, Ferket P, Linhart K (2013) Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 341:275–278
CrossRef Google scholar
[5]
Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24:556–563
CrossRef Google scholar
[6]
Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123:493–505
CrossRef Google scholar
[7]
Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58:575–585
CrossRef Google scholar
[8]
Chapdelaine P, Gerard C, Sanchez N, Cherif K, Rousseau J, Ouellet DL, Jauvin D, Tremblay JP (2016) Development of an AAV9 coding for a 3XFLAG-TALEfrat#8-VP64 able to increase in vivo the human frataxin in YG8R mice. Gene Ther 23:606–614
CrossRef Google scholar
[9]
Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Bruning JC, Nolan PM, Ashcroft FM (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42:1086–1092
CrossRef Google scholar
[10]
Cohen J (2018) In dogs, CRISPR fixes a muscular dystrophy. Science 361:835
CrossRef Google scholar
[11]
Creemers JW, Choquet H, Stijnen P, Vatin V, Pigeyre M, Beckers S, Meulemans S, Than ME, Yengo L, Tauber M (2012) Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity. Diabetes 61:383–390
CrossRef Google scholar
[12]
Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K (2014) Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115:488–492
CrossRef Google scholar
[13]
Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348:1085–1095
CrossRef Google scholar
[14]
Hohenstein P, Slight J, Ozdemir DD, Burn SF, Berry R, Hastie ND (2008) High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi. Pathogenetics 1:3
CrossRef Google scholar
[15]
Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141
CrossRef Google scholar
[16]
Kannisto K, Pietilainen KH, Ehrenborg E, Rissanen A, Kaprio J, Hamsten A, Yki-Jarvinen H (2004) Overexpression of 11beta-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J Clin Endocrinol Metab 89:4414–4421
CrossRef Google scholar
[17]
Kublaoui BM, Holder JL Jr, Tolson KP, Gemelli T, Zinn AR (2006) SIM1 overexpression partially rescues agouti yellow and diet- induced obesity by normalizing food intake. Endocrinology 147:4542–4549
CrossRef Google scholar
[18]
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372
CrossRef Google scholar
[19]
Liu C, Zhang L, Liu H, Cheng K (2017) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 266:17–26
CrossRef Google scholar
[20]
Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403
CrossRef Google scholar
[21]
Ma Y, Zhang L, Huang X (2014) Genome modification by CRISPR/Cas9. FEBS J 281:5186–5193
CrossRef Google scholar
[22]
Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, Hardin A, Eckalbar WL, Vaisse C, Ahituv N (2019) CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363:eaau0629
CrossRef Google scholar
[23]
Michaud JL, Boucher F, Melnyk A, Gauthier F, Goshu E, Levy E, Mitchell GA, Himms-Hagen J, Fan CM (2001) Sim1 haploinsuf- ficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 10:1465–1473
CrossRef Google scholar
[24]
Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407
CrossRef Google scholar
[25]
Pignani S, Zappaterra F, Barbon E, Follenzi A, Bovolenta M, Bernardi F, Branchini A, Pinotti M (2019) Tailoring the CRISPR system to transactivate coagulation gene promoters in normal and mutated contexts. Biochim Biophys Acta Gene Regul Mech. https://doi.org/10.1016/j.bbagrm.2019.04.002
CrossRef Google scholar
[26]
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Perusse L, Bouchard C (2006) The human obesity gene map: the 2005 update. Obesity 14:529–644
CrossRef Google scholar
[27]
Rossidis AC, Stratigis JD, Chadwick AC, Hartman HA, Ahn NJ, Li H, Singh K, Coons BE, Li L, Lv W (2018) In utero CRISPRmediated therapeutic editing of metabolic genes. Nat Med 24:1513–1518
CrossRef Google scholar
[28]
Savell KE, Bach SV, Zipperly ME, Revanna JS, Goska NA, Tuscher JJ, Duke CG, Sultan FA, Burke JN, Williams D (2019) A neuron-optimized CRISPR/dCas9 activation system for robust and specific gene regulation. eNeuro.
CrossRef Google scholar
[29]
Seeger C, Sohn JA (2014) Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther Nucleic Acids 3:e216
CrossRef Google scholar
[30]
Sera T (2009) Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 61:513–526
CrossRef Google scholar
[31]
Shah BP, Vong L, Olson DP, Koda S, Krashes MJ, Ye C, Yang Z, Fuller PM, Elmquist JK, Lowell BB (2014) MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc Natl Acad Sci USA 111:13193–13198
CrossRef Google scholar
[32]
Shinohara ET, Kaminski JM, Segal DJ, Pelczar P, Kolhe R, Ryan T, Coates CJ, Fraser MJ, Handler AM, Yanagimachi R (2007) Active integration: new strategies for transgenesis. Trans Res 16:333–339
CrossRef Google scholar
[33]
Soriano V (2017) Hot news: gene therapy with CRISPR/Cas9 coming to age for HIV cure. AIDS Rev 19:167–172
CrossRef Google scholar
[34]
Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411
CrossRef Google scholar
[35]
Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P (2000) Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Investig 106:253–262
CrossRef Google scholar
[36]
Wang L, Smith J, Breton C, Clark P, Zhang J, Ying L, Che Y, Lape J, Bell P, Calcedo R (2018) Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nat Biotechnol 36:717–725
CrossRef Google scholar
[37]
Wang X, Raghavan A, Chen T, Qiao L, Zhang Y, Ding Q, Musunuru K (2016) CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo-brief report. Arterioscler Thromb Vasc Biol 36:783–786
CrossRef Google scholar
[38]
Xiong L, Wu F, Wu Q, Xu L, Cheung OK, Kang W, Mok MT, Szeto LLM, Lun CY, Lung RW (2019) Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun 10:335
CrossRef Google scholar
[39]
Xu Y, Wu Z, Sun H, Zhu Y, Kim ER, Lowell BB, Arenkiel BR, Xu Y, Tong Q (2013) Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. Cell Metab 18:860–870
CrossRef Google scholar
[40]
Zou Y, Lu P, Shi J, Liu W, Yang M, Zhao S, Chen N, Chen M, Sun Y, Gao A (2017) IRX3 promotes the browning of white adipocytes and its rare variants are associated with human obesity risk. EBioMedicine 24:64–75
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s)
AI Summary AI Mindmap
PDF(321 KB)

Accesses

Citations

Detail

Sections
Recommended

/