New paradigms on hematopoietic stem cell differentiation

Hui Cheng, Zhaofeng Zheng, Tao Cheng

PDF(1505 KB)
PDF(1505 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (1) : 34-44. DOI: 10.1007/s13238-019-0633-0
REVIEW
REVIEW

New paradigms on hematopoietic stem cell differentiation

Author information +
History +

Abstract

Ever since hematopoietic stem cells (HSCs) were first identified half a century ago, their differentiation roadmap has been extensively studied. The classical model of hematopoiesis has long held as a dogma that HSCs reside at the top of a hierarchy in which HSCs possess self-renewal capacity and can progressively give rise to all blood lineage cells. However, over the past several years, with advances in single cell technologies, this developmental scheme has been challenged. In this review, we discuss the evidence supporting heterogeneity within HSC and progenitor populations as well as the hierarchical models revised by novel approaches mainly in mouse system. These evolving views provide further understanding of hematopoiesis and highlight the complexity of hematopoietic differentiation.

Keywords

hematopoietic stem cell / hierarchy / heterogeneity / differentiation

Cite this article

Download citation ▾
Hui Cheng, Zhaofeng Zheng, Tao Cheng. New paradigms on hematopoietic stem cell differentiation. Protein Cell, 2020, 11(1): 34‒44 https://doi.org/10.1007/s13238-019-0633-0

References

[1]
Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge OJ, Thoren LA (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythromegakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121:295–306
CrossRef Google scholar
[2]
Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197
CrossRef Google scholar
[3]
Belyaev NN, Brown DE, Diaz AI, Rae A, Jarra W, Thompson J, Langhorne J, Potocnik AJ (2010) Induction of an IL7-R(+)c-Kit(hi) myelolymphoid progenitor critically dependent on IFN-gamma signaling during acute malaria. Nat Immunol 11:477–485
CrossRef Google scholar
[4]
Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN (2010) Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6:48–58
CrossRef Google scholar
[5]
Benz C, Copley MR, Kent DG, Wohrer S, Cortes A, Aghaeepour N, Ma E, Mader H, Rowe K, Day C(2012) Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10:273–283
CrossRef Google scholar
[6]
Boyer SW, Schroeder AV, Smith-Berdan S, Forsberg EC (2011) All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell 9:64–73
CrossRef Google scholar
[7]
Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20(11):1315
CrossRef Google scholar
[8]
Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, Majeti R, Chang HY, Greenleaf WJ (2018) Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173:1535–1548 e1516
CrossRef Google scholar
[9]
Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, Reth M, Hofer T, Rodewald HR (2015) Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518:542–546
CrossRef Google scholar
[10]
Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa JL, Packer JS, Christiansen L (2018) Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361:1380–1385
CrossRef Google scholar
[11]
Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R, Alcolea V, Boukarabila H, Grasso F, Gambardella A, Grover A (2018) Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554:106–111
CrossRef Google scholar
[12]
Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 17:573–590
CrossRef Google scholar
[13]
Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, Filippova GN, Huang X, Christiansen L, DeWitt WS(2018) A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174:1309–1324 e1318
CrossRef Google scholar
[14]
Dick JE (2003) Stem cells: Self-renewal writ in blood. Nature 423:231–233
CrossRef Google scholar
[15]
Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K, Lee SJ, Brinkman R, Eaves C (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:218–229
CrossRef Google scholar
[16]
Eng CL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, Yuan GC (2019) Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568(7751):235–239
CrossRef Google scholar
[17]
Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E, Chen J, Sieow JL, Penny HL, Ching GC, Devi S (2018) Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48:364–379 e368
CrossRef Google scholar
[18]
Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegue E (2006) New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell 126:415–426
CrossRef Google scholar
[19]
Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S, Prendergast AM, Schnell A, Hexel K (2015) Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17(4):422–434
CrossRef Google scholar
[20]
Huang H, Cantor AB (2009) Common features of megakaryocytes and hematopoietic stem cells: what’s the connection? J Cell Biochem 107:857–864
CrossRef Google scholar
[21]
Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89:1502–1506
CrossRef Google scholar
[22]
Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328
CrossRef Google scholar
[23]
Jacobsen SEW, Nerlov C (2019) Haematopoiesis in the era of advanced single-cell technologies. Nat Cell Biol 21:2–8
CrossRef Google scholar
[24]
Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M, Quek L, Otto G, Repapi E, Doondeea J (2018) Single-cell analysis reveals the continuum of human lymphomyeloid progenitor cells. Nat Immunol 19:85–97
CrossRef Google scholar
[25]
Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121
CrossRef Google scholar
[26]
Kim MH, Yang D, Kim M, Kim SY, Kim D, Kang SJ (2017) A latelineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Sci Rep 7:39804
CrossRef Google scholar
[27]
Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672
CrossRef Google scholar
[28]
Laurenti E, Gottgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553:418–426
CrossRef Google scholar
[29]
Lu R, Czechowicz A, Seita J, Jiang D, Weissman IL (2019) Clonallevel lineage commitment pathways of hematopoietic stem cells in vivo. Proc Natl Acad Sci USA 116:1447–1456
CrossRef Google scholar
[30]
Lu R, Neff NF, Quake SR, Weissman IL (2011) Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol 29:928–933
CrossRef Google scholar
[31]
Macaulay IC, Svensson V, Labalette C, Ferreira L, Hamey F, Voet T, Teichmann SA, Cvejic A (2016) Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep 14:966–977
CrossRef Google scholar
[32]
Mantel CR, O’Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G, Brustovetsky N, Srour EF, Lee MR, Messina-Graham S (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161:1553–1565
CrossRef Google scholar
[33]
Manz MG, Miyamoto T, Akashi K, Weissman IL (2002) Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 99:11872–11877
CrossRef Google scholar
[34]
Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20:833–846
CrossRef Google scholar
[35]
Metcalf D (2008) Hematopoietic cytokines. Blood 111:485–491
CrossRef Google scholar
[36]
Moignard V, Macaulay IC, Swiers G, Buettner F, Schutte J, Calero-Nieto FJ, Kinston S, Joshi A, Hannah R, Theis FJ (2013) Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 15:363–372
CrossRef Google scholar
[37]
Morita Y, Ema H, Nakauchi H (2010) Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 207(6):1173–1182
CrossRef Google scholar
[38]
Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334
CrossRef Google scholar
[39]
Morrison SJ, Uchida N, Weissman IL (1995) The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11:35–71
CrossRef Google scholar
[40]
Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124:1929–1939
[41]
Muller-Sieburg CE, Cho RH, Karlsson L, Huang JF, Sieburg HB (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103:4111–4118
CrossRef Google scholar
[42]
Muller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB (2002) Deterministic regulation of hematopoietic stem cell selfrenewal and differentiation. Blood 100:1302–1309
CrossRef Google scholar
[43]
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cellto-cell variability in chromosome structure. Nature 502:59–64
CrossRef Google scholar
[44]
Nakorn TN, Miyamoto T, Weissman IL (2003) Characterization of mouse clonogenic megakaryocyte progenitors. Proc Natl Acad Sci USA 100:205–210
CrossRef Google scholar
[45]
Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG, Gottgens B (2016) A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128:e20–31
CrossRef Google scholar
[46]
Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:533–543
CrossRef Google scholar
[47]
Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, Kaufmann KB, McLeod J, Laurenti E, Dunant CF (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:aab2116
CrossRef Google scholar
[48]
Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13:102–116
CrossRef Google scholar
[49]
Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, Suda T (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050
CrossRef Google scholar
[50]
Orkin SH (2000) Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1:57–64
CrossRef Google scholar
[51]
Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245
CrossRef Google scholar
[52]
Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, Winter D, Lara-Astiaso D, Gury M, Weiner A (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163:1663–1677
CrossRef Google scholar
[53]
Pei W, Feyerabend TB, Rossler J, Wang X, Postrach D, Busch K, Rode I, Klapproth K, Dietlein N, Quedenau C (2017) Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548:456–460
CrossRef Google scholar
[54]
Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ, Leavitt AD, Stuart JM, Gottgens B, Passegue E (2015) Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17:35–46
CrossRef Google scholar
[55]
Pinho S, Marchand T, Yang E, Wei Q, Nerlov C, Frenette PS (2018) Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev Cell 44:634–641 e634
CrossRef Google scholar
[56]
Pronk CJ, Rossi DJ, Mansson R, Attema JL, Norddahl GL, Chan CK, Sigvardsson M, Weissman IL, Bryder D (2007) Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1:428–442
CrossRef Google scholar
[57]
Reya T (2003) Regulation of hematopoietic stem cell self-renewal. Recent Progr Horm Res 58:283–295
CrossRef Google scholar
[58]
Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111
CrossRef Google scholar
[59]
Robb L (2007) Cytokine receptors and hematopoietic differentiation. Oncogene 26:6715–6723
CrossRef Google scholar
[60]
Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, Jankovic M, Sun J, Calogero RA, Klein AM, Camargo FD (2018) Clonal analysis of lineage fate in native haematopoiesis. Nature 553:212–216
CrossRef Google scholar
[61]
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ (2019) Slide-seq: A scalable technology for measuring genomewide expression at high spatial resolution. Science 363:1463–1467
CrossRef Google scholar
[62]
Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, Moore S, Carella C, Matsuoka S, Jones TB (2013) Plateletbiased stem cells reside at the apex of the haematopoietic stemcell hierarchy. Nature 502(7470):232
CrossRef Google scholar
[63]
Satpathy AT, Saligrama N, Buenrostro JD, Wei Y, Wu B, Rubin AJ, Granja JM, Lareau CA, Li R, Qi Y (2018) Transcript-indexed ATAC-seq for precision immune profiling. Nat Med 24:580–590
CrossRef Google scholar
[64]
Sawai CM, Babovic S, Upadhaya S, Knapp D, Lavin Y, Lau CM, Goloborodko A, Feng J, Fujisaki J, Ding L (2016) Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45:597–609
CrossRef Google scholar
[65]
Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2:640–653
CrossRef Google scholar
[66]
Shin JY, Hu W, Naramura M, Park CY (2014) High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med 211:217–231
CrossRef Google scholar
[67]
Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62
CrossRef Google scholar
[68]
Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, Mortensen LJ, Alt C, Turcotte R (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508:269–273
CrossRef Google scholar
[69]
Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9:298–310
CrossRef Google scholar
[70]
Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR49 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988
CrossRef Google scholar
[71]
Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O, Camargo FD (2014) Clonal dynamics of native haematopoiesis. Nature 514:322–327
CrossRef Google scholar
[72]
Till JE, Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222
CrossRef Google scholar
[73]
Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19:271–281
CrossRef Google scholar
[74]
Wang JF, Liu ZY, Groopman JE (1998) The alpha-chemokine receptor CXCR74 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 92:756–764
CrossRef Google scholar
[75]
Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J (2018) Threedimensional intact-tissue sequencing of single-cell transcriptional states. Science 361(6400):eaat5691
CrossRef Google scholar
[76]
Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118–1129
CrossRef Google scholar
[77]
Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sanchez Castillo MOedekoven CA, Diamanti E, Schulte R (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16:712–724
CrossRef Google scholar
[78]
Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, Ema H, Nakauchi H (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:1112–1126
CrossRef Google scholar
[79]
Yang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M, Jacobsen SE (2005) Identification of Lin(-)Sca1(+)kit(+)CD34 (+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105:2717–2723
CrossRef Google scholar
[80]
Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697
CrossRef Google scholar
[81]
Zhang CC, Lodish HF (2008) Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol 15:307–
CrossRef Google scholar
[82]
Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, Ahamed J, Li L (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20(11):1321
CrossRef Google scholar
[83]
Zhu J, Emerson SG (2002) Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21:3295–3313
CrossRef Google scholar
[84]
Zhu YP, Padgett L, Dinh HQ, Marcovecchio P, Blatchley A, Wu R, Ehinger E, Kim C, Mikulski Z, Seumois G (2018) Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep 24:2329–2341 e2328
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s)
AI Summary AI Mindmap
PDF(1505 KB)

Accesses

Citations

Detail

Sections
Recommended

/