Mutations in foregut SOX2+ cells induce efficient proliferation via CXCR2 pathway

Tomoaki Hishida, Eric Vazquez-Ferrer, Yuriko Hishida-Nozaki, Ignacio Sancho-Martinez, Yuta Takahashi, Fumiyuki Hatanaka, Jun Wu, Alejandro Ocampo, Pradeep Reddy, Min-Zu Wu, Laurie Gerken, Reuben J. Shaw, Concepcion Rodriguez Esteban, Christopher Benner, Hiroshi Nakagawa, Pedro Guillen Garcia, Estrella Nuñez Delicado, Antoni Castells, Josep M. Campistol, Guang-Hui Liu, Juan Carlos Izpisua Belmonte

PDF(1737 KB)
PDF(1737 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (7) : 485-495. DOI: 10.1007/s13238-019-0630-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Mutations in foregut SOX2+ cells induce efficient proliferation via CXCR2 pathway

Author information +
History +

Abstract

Identification of the precise molecular pathways involved in oncogene-induced transformation may help us gain a better understanding of tumor initiation and promotion. Here, we demonstrate that SOX2+ foregut epithelial cells are prone to oncogenic transformation upon mutagenic insults, such as KrasG12D and p53 deletion. GFP-based lineage-tracing experiments indicate that SOX2+ cells are the cells-of-origin of esophagus and stomach hyperplasia. Our observations indicate distinct roles for oncogenic KRAS mutation and P53 deletion. p53 homozygous deletion is required for the acquisition of an invasive potential, and KrasG12D expression, but not p53 deletion, suffices for tumor formation. Global gene expression analysis reveals secreting factors upregulated in the hyperplasia induced by oncogenic KRAS and highlights a crucial role for the CXCR2 pathway in driving hyperplasia. Collectively, the array of genetic models presented here demonstrate that stratified epithelial cells are susceptible to oncogenic insults, which may lead to a better understanding of tumor initiation and aid in the design of new cancer therapeutics.

Keywords

Sox2 / tumor / CXCR2 / stratified epithelia

Cite this article

Download citation ▾
Tomoaki Hishida, Eric Vazquez-Ferrer, Yuriko Hishida-Nozaki, Ignacio Sancho-Martinez, Yuta Takahashi, Fumiyuki Hatanaka, Jun Wu, Alejandro Ocampo, Pradeep Reddy, Min-Zu Wu, Laurie Gerken, Reuben J. Shaw, Concepcion Rodriguez Esteban, Christopher Benner, Hiroshi Nakagawa, Pedro Guillen Garcia, Estrella Nuñez Delicado, Antoni Castells, Josep M. Campistol, Guang-Hui Liu, Juan Carlos Izpisua Belmonte. Mutations in foregut SOX2+ cells induce efficient proliferation via CXCR2 pathway. Protein Cell, 2019, 10(7): 485‒495 https://doi.org/10.1007/s13238-019-0630-3

References

[1]
Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N (2008) Chemokine signaling via the CXCR1 receptor reinforces senescence. Cell 133:1006–1018
CrossRef Google scholar
[2]
Adams JR, Xu K, Liu JC, Agamez NM, Loch AJ, Wong RG,Wang W, Wright KL, Lane TF, Zacksenhaus E (2011) Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Res 71:2706–2717
CrossRef Google scholar
[3]
Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13:433–445
CrossRef Google scholar
[4]
Annovazzi L, Mellai M, Caldera V, Valente G, Schiffer D (2011) SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genom Proteom 8:139–147
[5]
Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K (2011) Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9:317–329
CrossRef Google scholar
[6]
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007
CrossRef Google scholar
[7]
Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41:1238–1242
CrossRef Google scholar
[8]
Blanpain C, Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14:489–502
CrossRef Google scholar
[9]
Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E (2014) SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511:246–250
CrossRef Google scholar
[10]
Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6 (6):472–476
CrossRef Google scholar
[11]
Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868
CrossRef Google scholar
[12]
Davidson LA, Callaway ES, Kim E, Weeks BR, Fan Y-Y, Allred CD, Chapkin RS (2015) Targeted deletion of p53 in Lgr5-expressing intestinal stem cells promotes colon tumorigenesis in a preclinical model of colitis-associated cancer. Cancer Res 75(24):5392–5397
CrossRef Google scholar
[13]
Doupe DP, Alcolea MP, Roshan A, Zhang G, Klein AM, Simons BD, Jones PH (2012) A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337:1091–1093
CrossRef Google scholar
[14]
Du Q, Yan W, Burton VH, Hewitt SM, Wang L, Hu N, Taylor PR, Armani MD, Mukherjee S, Emmert-Buck MR (2013) Validation of esophageal squamous cell carcinoma candidate genes from high-throughput transcriptomic studies. Am J Cancer Res 3:402–410
[15]
Feng Y, Bommer GT, Zhao J, Green M, Sands E, Zhai Y, Brown K, Burberry A, Cho KR, Fearon ER (2011) Mutant KRAS promotes hyperplasia and alters differentiation in the colon epithelium but does not expand the presumptive stem cell pool. Gastroenterology 141(1003–1013):e1001–1010
CrossRef Google scholar
[16]
Gereke M, Autengruber A, Grobe L, Jeron A, Bruder D, Stegemann-Koniszewski S (2012) Flow cytometric isolation of primary murine type II alveolar epithelial cells for functional and molecular studies. J Vis Exp.
CrossRef Google scholar
[17]
Huels DJ, Sansom OJ (2015) Stem vs non-stem cell origin of colorectal cancer. Br J Cancer 113:1–5
CrossRef Google scholar
[18]
Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248
CrossRef Google scholar
[19]
Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29:418–425
CrossRef Google scholar
[20]
Kalabis J, Oyama K, Okawa T, Nakagawa H, Michaylira CZ, Stairs DB, Figueiredo JL, Mahmood U, Diehl JA, Herlyn M (2008) A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Invest 118:3860–3869
CrossRef Google scholar
[21]
Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077
CrossRef Google scholar
[22]
Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479
CrossRef Google scholar
[23]
Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogeneinduced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031
CrossRef Google scholar
[24]
Lesina M, Wormann SM, Morton J, Diakopoulos KN, Korneeva O, Wimmer M, Einwachter H, Sperveslage J, Demir IE, Kehl T (2016) RelA regulates CXCL1/CXCR22-dependent oncogeneinduced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest 126:2919–2932
CrossRef Google scholar
[25]
Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, Sato Y, Okuno Y, Varela AM, Ding LW (2014) Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet 46:467–473
CrossRef Google scholar
[26]
Liu K, Jiang M, Lu Y, Chen H, Sun J, Wu S, Ku WY, Nakagawa H, Kita Y, Natsugoe S (2013) Sox2 cooperates with inflammation-mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells. Cell Stem Cell 12:304–315
CrossRef Google scholar
[27]
Liu QW, Fu JH, Luo KJ, Yang HX, Wang JY, Hu Y, Yang H, Bella E (2011) Identification of EGFR and KRAS mutations in Chinese patients with esophageal squamous cell carcinoma. Dis Esophagus 24:374–380
CrossRef Google scholar
[28]
Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, Onaitis MW (2010) Evidence that SOX2 overexpression is oncogenic in the lung. PLoS ONE 5:e11022
CrossRef Google scholar
[29]
Mao X, Fujiwara Y,Chapdelaine A, Yang H, Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97:324–326
CrossRef Google scholar
[30]
Marino S, Vooijs M,van Der Gulden H, Jonkers J, Berns A (2000) Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14:994–1004
[31]
Mukhopadhyay A, Berrett KC, Kc U, Clair PM, Pop SM, Carr SR, Witt BL, Oliver TG (2014) Sox2 cooperates with Lkb1 loss in a mouse model of squamous cell lung cancer. Cell Rep 8:40–49
CrossRef Google scholar
[32]
Pruitt SC, Bailey KJ, Freeland A (2007) Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells 25:3121–3132
CrossRef Google scholar
[33]
Que J, Luo X, Schwartz RJ, Hogan BL (2009) Multiple roles for Sox2 in the developing and adult mouse trachea. Development 136:1899–1907
CrossRef Google scholar
[34]
Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, Bergbower EA, Guan Y, Shin J, Guillory J (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–1116
CrossRef Google scholar
[35]
Safran M, Kim WY, Kung AL, Horner JW, DePinho RA, Kaelin WG Jr (2003) Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol Imaging 2:297–302
CrossRef Google scholar
[36]
Sanchez-Danes A, Hannezo E, Larsimont JC, Liagre M, Youssef KK, Simons BD, Blanpain C (2016) Defining the clonal dynamics leading to mouse skin tumour initiation. Nature 536:298–303
CrossRef Google scholar
[37]
Sarkar A, Huebner AJ, Sulahian R, Anselmo A, Xu X, Flattery K, Desai N, Sebastian C, Yram MA, Arnold K (2016) Sox2 suppresses gastric tumorigenesis in mice. Cell Rep 16:1929–1941
CrossRef Google scholar
[38]
Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y, Lechel A, Rudolph KL, Langer R, Slotta-Huspenina J (2013) Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23(1):93–106
CrossRef Google scholar
[39]
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602
CrossRef Google scholar
[40]
Shigaki H, Baba Y, Watanabe M, Miyake K, Murata A, Iwagami S, Ishimoto T, Iwatsuki M, Yoshida N, Baba H (2013) KRAS and BRAF mutations in 203 esophageal squamous cell carcinomas: pyrosequencing technology and literature review. Ann Surg Oncol 20(Suppl 3):S485–491
CrossRef Google scholar
[41]
Singh M, Lima A, Molina R, Hamilton P, Clermont AC, Devasthali V, Thompson JD, Cheng JH, Bou Reslan H, Ho CC (2010) Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat Biotechnol 28:585–593
CrossRef Google scholar
[42]
Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H (2014) Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep 15:62–69
CrossRef Google scholar
[43]
Song Y, Li L, Ou Y, Gao Z, Li E, Li X, ZhangW, Wang J, Xu L, Zhou Y (2014) Identification of genomic alterations in oesophageal squamous cell cancer. Nature 509:91–95
CrossRef Google scholar
[44]
Tong M, Chan KW, Bao JY, Wong KY, Chen JN, Kwan PS, Tang KH, Fu L, Qin YR, Lok S (2012) Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res 72:6024–6035
CrossRef Google scholar
[45]
Vanner RJ, Remke M, Gallo M, Selvadurai HJ, Coutinho F, Lee L, Kushida M, Head R, Morrissy S, Zhu X (2014) Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell 26:33–47
CrossRef Google scholar
[46]
Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728
CrossRef Google scholar
[47]
Wang B, Hendricks DT, Wamunyokoli F, Parker MI (2006) A growthrelated oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res 66:3071–3077
CrossRef Google scholar
[48]
White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE (1998) Identification of a potent, selective non-peptide CXCR45 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273:10095–10098
CrossRef Google scholar
[49]
Zhu L, Finkelstein D, Gao C, Shi L, Wang Y, Lopez-Terrada D, Wang K, Utley S, Pounds S, Neale G (2016) Multi-organ Mapping of Cancer Risk. Cell 166(1132–1146):e1137
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s)
AI Summary AI Mindmap
PDF(1737 KB)

Accesses

Citations

Detail

Sections
Recommended

/