Current advances in haploid stem cells

Tongtong Cui, Zhikun Li, Qi Zhou, Wei Li

PDF(1127 KB)
PDF(1127 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (1) : 23-33. DOI: 10.1007/s13238-019-0625-0
REVIEW
REVIEW

Current advances in haploid stem cells

Author information +
History +

Abstract

Diploidy is the typical genomic mode in all mammals. Haploid stem cells are artificial cell lines experimentally derived invitroin the form of different types of stem cells, which combine the characteristics of haploidy with a broad developmental potential and open the possibil- ity to uncover biological mysteries at a genomic scale. To date, a multitude of haploid stem cell types from mouse, rat, monkey and humans have been derived, as more are in development. They have been applied in high-throughput genetic screens and mammalian assisted reproduction. Here, we review the generation, unique properties and broad applications of these remarkable cells.

Keywords

haploidy / parthenogenetic / androgenetic / cells / diploidization / functional genomics / imprinting

Cite this article

Download citation ▾
Tongtong Cui, Zhikun Li, Qi Zhou, Wei Li. Current advances in haploid stem cells. Protein Cell, 2020, 11(1): 23‒33 https://doi.org/10.1007/s13238-019-0625-0

References

[1]
Baggen J, Thibaut HJ, Staring J, Jae LT, Liu Y, Guo H, Slager JJ, de Bruin JW, van Vliet AL, Blomen VA (2016) Enterovirus D68 receptor requirements unveiled by haploid genetics. Proc Natl Acad Sci USA113:1399–1404
CrossRef Google scholar
[2]
Bai M, Wu Y, Li J (2016) Generation and application of mammalian haploid embryonic stem cells. J Intern Med 280:236–245
CrossRef Google scholar
[3]
Beukeboom LW, Kamping A, Louter M, Pijnacker LP, Katju V, Ferree PM, Werren JH (2007) Haploid females in the parasitic wasp Nasonia vitripennis. Science 315:206
CrossRef Google scholar
[4]
Brito DA, Rieder CL (2006) Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16:1194–1200
CrossRef Google scholar
[5]
Brons IGM, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun B, de Sousa Chuva, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195
CrossRef Google scholar
[6]
Bryja V, Bonilla S, Arenas E (2006) Derivation of mouse embryonic stem cells. Nat Protoc 1:2082–2087
CrossRef Google scholar
[7]
Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I, Godarova A, Kotecki M, Cochran BH, Spooner E, Ploegh HL (2009) Haploid genetic screens in human cells identify host factors used by pathogens. Science 326:1231–1235
CrossRef Google scholar
[8]
Carette JE, Guimaraes CP, Wuethrich I, Blomen VA, Varadarajan M, Sun C, Bell G, Yuan B, Muellner MK, Nijman SM (2011a) Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotechnol 29:542–546
CrossRef Google scholar
[9]
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, GriffinA M, Ruthel G (2011b) Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477:340–343
CrossRef Google scholar
[10]
Cui T, Jiang L, Li T, Teng F, Feng G, Wang X, He Z, Guo L, Xu K, Mao Y (2019) Derivationof mouse haploid trophoblast stem cells. Cell Rep 26(407–414):e405
CrossRef Google scholar
[11]
Debec A (1984) Evolution of karyotype in haploid cell lines of Drosophila melanogaster. Exp Cell Res 151:236–246
CrossRef Google scholar
[12]
Edwards RG (1957a) The experimental induction of gynogenesis in the mouse. I. Irradiationofthe spermby x-rays. ProcRSocLond SerB Biol Sci 146:469–487
CrossRef Google scholar
[13]
Edwards RG (1957b) The experimental induction of gynogenesis in the mouse. II. Ultra-violet irradiation of the sperm. Proc R Soc Lond SerB Biol Sci 146:488–504
CrossRef Google scholar
[14]
Edwards RG (1958) The experimental induction of gynogenesis in the mouse. III. Treatment of sperm with trypaflavine, toluidine blue, or nitrogen mustard. Proc R Soc Lond Ser B Biol Sci 149:117–129
CrossRef Google scholar
[15]
Egli D, Chen Alice E, Saphier G, Powers D, Alper M, Katz K, Berger B, Goland R, Leibel Rudolph L, Melton Douglas A (2011) Impracticality of egg donor recruitment in the absence of compensation. Cell Stem Cell 9:293–294
CrossRef Google scholar
[16]
Elling U, Penninger JM (2014) Genome wide functional genetics in haploid cells. FEBS Lett 588:2415–2421
CrossRef Google scholar
[17]
Elling U, Taubenschmid J, Wirnsberger G, O’Malley R, Demers SP, Vanhaelen Q, Shukalyuk AI, Schmauss G, Schramek D, Sch-nuetgen F (2011) Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9:563–574
CrossRef Google scholar
[18]
Elling U, Wimmer RA, Leibbrandt A, Burkard T, Michlits G, Leopoldi A, Micheler T, Abdeen D, Zhuk S, Aspalter IM (2017) A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature 550:114–118
CrossRef Google scholar
[19]
Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575
CrossRef Google scholar
[20]
Forment JV, Herzog M, Coates J, Konopka T, Gapp BV, Nijman SM, Adams DJ, Keane TM, Jackson SP (2016) Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells. Nat Chem Biol 13:12–14
CrossRef Google scholar
[21]
Forsburg SL (2001) The art and design of genetic screens: yeast. Nat Rev Genet 2:659–668
CrossRef Google scholar
[22]
Freimann R, Wutz A (2017) A fast and efficient size separation method for haploid embryonic stem cells. Biomicrofluidics 11:054117
CrossRef Google scholar
[23]
Giaever G, Nislow C (2014) The yeast deletion collection: a decade of functional genomics. Genetics 197:451–465
CrossRef Google scholar
[24]
Grimm S (2004) The art and design of genetic screens: mammalian culture cells. Nat Rev Genet 5:179–189
CrossRef Google scholar
[25]
Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136:1063–1069
CrossRef Google scholar
[26]
He W, Zhang X, Zhang Y, Zheng W, Xiong Z, Hu X, Wang M, Zhang L, Zhao K, Qiao Z (2018) Reduced self-diploidization and improved survival of semi-cloned mice produced from androge-netic haploid embryonic stem cells through overexpression of Dnmt3b. Stem Cell Rep 10:477–493
CrossRef Google scholar
[27]
He ZQ, Xia BL, Wang YK, Li J, Feng GH, Zhang LL, Li YH, Wan HF, Li TD, Xu K (2017) Generation of mouse haploid somatic cells by small molecules for genome-wide genetic screening. Cell Rep 20:2227–2237
CrossRef Google scholar
[28]
Hiramoto Y (1962) An analysis of the mechanism of fertilization by means of enucleation of sea urchin eggs. Exp Cell Res 28:323–334
CrossRef Google scholar
[29]
Horii T, Hatada I (2015) Genome editing using mammalian haploid cells. IntJ Mol Sci 16:23604–23614
CrossRef Google scholar
[30]
Kaufman MH (1978) Chromosome analysis of early postimplantation presumptive haploid parthenogenetic mouse embryos. JEmbryol Exp Morphol 45:85–91
[31]
Kaufman MH, Robertson EJ, Handyside AH, Evans MJ (1983) Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 73:249–261
[32]
Kim K, Ng K, Rugg-Gunn PJ, Shieh JH, Kirak O, Jaenisch R, Wakayama T, Moore MA, Pedersen RA, Daley GQ (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:346–352
CrossRef Google scholar
[33]
Kotecki M, Reddy PS, Cochran BH (1999) Isolation and character-ization of a near-haploid human cell line. Exp Cell Res 252:273–280
CrossRef Google scholar
[34]
Latos PA, Hemberger M (2016) From the stem of the placental tree: trophoblast stem cells and their progeny. Development 143:3650–3660
CrossRef Google scholar
[35]
Lebensohn AM, Dubey R, Neitzel LR, Tacchelly-Benites O, Yang E, Marceau CD, Davis EM, Patel BB, Bahrami-Nejad Z, Travaglini KJ (2016) Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling. Elife. https://doi.org/10.7554/eLife.21459
CrossRef Google scholar
[36]
Leeb M, Dietmann S, Paramor M, Niwa H, Smith A (2014) Genetic exploration of the exit from self-renewalusing haploid embryonic stem cells. Cell Stem Cell 14:385–393
CrossRef Google scholar
[37]
Leeb M, Walker R, Mansfield B, Nichols J, Smith A, Wutz A (2012) Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development 139:3301–3305
CrossRef Google scholar
[38]
Leeb M, Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479:131–134
CrossRef Google scholar
[39]
Li W, Li X, Li T, Jiang MG, Wan H, Luo GZ, Feng C, Cui X, Teng F, Yuan Y (2014) Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14:404–414
CrossRef Google scholar
[40]
Li W, Shuai L, Wan H, Dong M, Wang M, Sang L, Feng C, Luo GZ, Li T, Li X (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490:407–411
CrossRef Google scholar
[41]
Li W, Zhou Q (2017) New stem cell types for versatile applications. Natl Sci Rev 4:528–530
CrossRef Google scholar
[42]
Li X, Cui XL, Wang JQ, Wang YK, Li YF, Wang LY, Wan HF, Li TD, Feng GH, Shuai L (2016a) Generation and application of mouse-rat allodiploid embryonic stem cells. Cell 164:279–292
CrossRef Google scholar
[43]
Li Y, Shuai L (2017)Aversatile genetic tool: haploid cells. Stem Cell Res Ther 8:197
CrossRef Google scholar
[44]
Li Z, Wan H, Feng G, Wang L, He Z, Wang Y, Wang XJ, Li W, Zhou Q, Hu B (2016b) Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Res 26:135–138
CrossRef Google scholar
[45]
Li ZK, Wang LY, Wang LB, Feng GH, Yuan XW, Liu C, Xu K, Li YH, Wan HF, Zhang Y (2018) Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprint-ing region deletions. Cell Stem Cell 23(665–676):e664
CrossRef Google scholar
[46]
Liu G, Wang X, Liu Y, Zhang M, Cai T, Shen Z, Jia Y,Huang Y (2017) Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens. Nucleic Acids Res 45:e180
CrossRef Google scholar
[47]
McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183
CrossRef Google scholar
[48]
Modliński JA (1975) Haploid mouse embryos obtained by microsur-gical removalof one pronucleus. J EmbryolExp Morphol 33:897–905
[49]
Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F, Thore S, Wutz A (2015) Identification of spen as a crucial factor for xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep 12:554–561
CrossRef Google scholar
[50]
Olbrich T, Mayor-Ruiz C, Vega-Sendino M, Gomez C, Ortega S, Ruiz S, Fernandez-Capetillo O (2017) A p53-dependent response limits the viability of mammalian haploid cells. Proc Natl Acad Sci 114:9367–9372
CrossRef Google scholar
[51]
Pamilo P, Crozier RH (1981) Genic variation in male haploids under deterministic selection. Genetics 98:199–214
[52]
Paquin C, Adams J (1983) Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302:495–500
CrossRef Google scholar
[53]
Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA (2013) Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493:632–637
CrossRef Google scholar
[54]
Peng K, Li X, Wu C, Wang Y, Yu J, Zhang J, Gao Q, Zhang W, Zhang Q, Fan Y (2019) Derivationof haploid trophoblast stem cells via conversion in vitro. iScience 11:508–518
CrossRef Google scholar
[55]
Perrot V, Richerd S, Valero M (1991) Transition from haploidy to diploidy. Nature 351:315–317
CrossRef Google scholar
[56]
Potapova TA, Zhu J, Li R (2013) Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev 32:377–389
CrossRef Google scholar
[57]
Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449
CrossRef Google scholar
[58]
Sagi I, Benvenisty N (2017) Haploidy in humans: an evolutionary and developmental perspective. Dev Cell 41:581–589
CrossRef Google scholar
[59]
Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature 532:107–111
CrossRef Google scholar
[60]
Shalem O, Sanjana NE, Zhang Fx (2015) High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet 16:299–311
CrossRef Google scholar
[61]
Shuai L, Wang Y, Dong M, Wang X, Sang L, Wang M, Wan H, Luo G, Gu T, Yuan Y (2015) Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cellsin vitro. J Mol Cell Biol 7:326–337
CrossRef Google scholar
[62]
Silk AD, Zasadil LM, Holland AJ, Vitre B, Cleveland DW, Weaver BA (2013) Chromosome missegregation rate predicts whether ane-uploidy will promote or suppress tumors. Proc Natl Acad Sci USA 110:E4134–4141
CrossRef Google scholar
[63]
Staring J, von Castelmur E, Blomen VA, van den Hengel LG, Brockmann M, Baggen J, Thibaut HJ, Nieuwenhuis J, Janssen H, van Kuppeveld FJ (2017) PLA2G16 represents a switch between entry and clearance of picornaviridae. Nature 541:412–416
CrossRef Google scholar
[64]
Surani MA, Barton SC (1983) Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222:1034–1036
CrossRef Google scholar
[65]
Surani MA, Barton SC, Norris ML (1984) Development of reconsti-tuted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550
CrossRef Google scholar
[66]
Surani MA, Kothary R, Singh PB, Fundele R, Ferguson-Smith AC, Barton SC (1990) Genome imprinting and development in the mouse. Dev Suppl 1990:89–98
[67]
Takahashi S, Lee J, Kohda T, Matsuzawa A, Kawasumi M, Kanai-Azuma M, Kaneko-Ishino T, Ishino F (2014) Inductionof the G2/M transition stabilizes haploid embryonic stem cells. Development 141:3842–3847
CrossRef Google scholar
[68]
Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130:6155–6163
CrossRef Google scholar
[69]
Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblaststem cell proliferation by FGF4. Science 282:2072–2075
CrossRef Google scholar
[70]
Tarkowski AK, Rossant J (1976) Haploid mouse blastocysts devel-oped from bisected zygotes. Nature 259:663–665
CrossRef Google scholar
[71]
Tarkowski AK, Witkowska A, Nowicka J (1970) Experimental partheonogenesis in the mouse. Nature 226:162–165
CrossRef Google scholar
[72]
Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199
CrossRef Google scholar
[73]
Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180:665–672
CrossRef Google scholar
[74]
Wan H, He Z, Dong M, Gu T, Luo GZ, Teng F, Xia B, Li W, Feng C, Li X (2013) Parthenogenetic haploid embryonic stem cells produce fertile mice. Cell Res 23:1330–1333
CrossRef Google scholar
[75]
Wang H, Zhang W, Yu J, Wu C, Gao Q, Li X, Li Y, Zhang J, Tian Y, Tan T (2018) Genetic screening and multipotencyin rhesus monkey haploid neural progenitor cells. Development. https://doi.org/10.1242/dev.160531
CrossRef Google scholar
[76]
Wutz A (2014) Haploid mouse embryonic stem cells: rapid genetic screening and germline transmission. Annu Rev Cell Dev Biol 30:705–722
CrossRef Google scholar
[77]
Xu H, Yue C, Zhang T, Li Y, Guo A, Liao J, Pei G, Li J, Jing N (2017) Derivation of haploid neurons from mouse androgenetic haploid embryonic stem cells. Neurosci Bull 33:361–364
CrossRef Google scholar
[78]
Yan H, Papadopoulos N, Marra G, Perrera C, Jiricny J, Boland CR, Lynch HT, Chadwick RB, de la Chapelle A, Berg K (2000) Conversion of diploidy to haploidy. Nature 403:723–724
CrossRef Google scholar
[79]
Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H (2013) Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 23:1187–1200
CrossRef Google scholar
[80]
Yang H, Shi L, Wang BA, Liang D, Zhong C, Liu W, Nie Y, Liu J, Zhao J, Gao X (2012) Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149:605–617
CrossRef Google scholar
[81]
Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433
CrossRef Google scholar
[82]
Yilmaz A, Peretz M, Sagi I, Benvenisty N (2016) Haploid human embryonic stem cells: half the genome, double the value. Cell Stem Cell 19:569–572
CrossRef Google scholar
[83]
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground stateof embryonic stem cell self-renewal. Nature 453:519–523
CrossRef Google scholar
[84]
Zhong C, Yin Q, Xie Z, Bai M, Dong R, Tang W, Xing YH, Zhang H, Yang S, Chen LL (2015) CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library. Cell Stem Cell 17:221–232
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s)
AI Summary AI Mindmap
PDF(1127 KB)

Accesses

Citations

Detail

Sections
Recommended

/