Current advances in haploid stem cells
Tongtong Cui, Zhikun Li, Qi Zhou, Wei Li
Current advances in haploid stem cells
Diploidy is the typical genomic mode in all mammals. Haploid stem cells are artificial cell lines experimentally derived invitroin the form of different types of stem cells, which combine the characteristics of haploidy with a broad developmental potential and open the possibil- ity to uncover biological mysteries at a genomic scale. To date, a multitude of haploid stem cell types from mouse, rat, monkey and humans have been derived, as more are in development. They have been applied in high-throughput genetic screens and mammalian assisted reproduction. Here, we review the generation, unique properties and broad applications of these remarkable cells.
haploidy / parthenogenetic / androgenetic / cells / diploidization / functional genomics / imprinting
[1] |
Baggen J, Thibaut HJ, Staring J, Jae LT, Liu Y, Guo H, Slager JJ, de Bruin JW, van Vliet AL, Blomen VA
CrossRef
Google scholar
|
[2] |
Bai M, Wu Y, Li J (2016) Generation and application of mammalian haploid embryonic stem cells. J Intern Med 280:236–245
CrossRef
Google scholar
|
[3] |
Beukeboom LW, Kamping A, Louter M, Pijnacker LP, Katju V, Ferree PM, Werren JH (2007) Haploid females in the parasitic wasp Nasonia vitripennis. Science 315:206
CrossRef
Google scholar
|
[4] |
Brito DA, Rieder CL (2006) Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16:1194–1200
CrossRef
Google scholar
|
[5] |
Brons IGM, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun B, de Sousa Chuva, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA
CrossRef
Google scholar
|
[6] |
Bryja V, Bonilla S, Arenas E (2006) Derivation of mouse embryonic stem cells. Nat Protoc 1:2082–2087
CrossRef
Google scholar
|
[7] |
Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I, Godarova A, Kotecki M, Cochran BH, Spooner E, Ploegh HL
CrossRef
Google scholar
|
[8] |
Carette JE, Guimaraes CP, Wuethrich I, Blomen VA, Varadarajan M, Sun C, Bell G, Yuan B, Muellner MK, Nijman SM
CrossRef
Google scholar
|
[9] |
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, GriffinA M, Ruthel G
CrossRef
Google scholar
|
[10] |
Cui T, Jiang L, Li T, Teng F, Feng G, Wang X, He Z, Guo L, Xu K, Mao Y
CrossRef
Google scholar
|
[11] |
Debec A (1984) Evolution of karyotype in haploid cell lines of Drosophila melanogaster. Exp Cell Res 151:236–246
CrossRef
Google scholar
|
[12] |
Edwards RG (1957a) The experimental induction of gynogenesis in the mouse. I. Irradiationofthe spermby x-rays. ProcRSocLond SerB Biol Sci 146:469–487
CrossRef
Google scholar
|
[13] |
Edwards RG (1957b) The experimental induction of gynogenesis in the mouse. II. Ultra-violet irradiation of the sperm. Proc R Soc Lond SerB Biol Sci 146:488–504
CrossRef
Google scholar
|
[14] |
Edwards RG (1958) The experimental induction of gynogenesis in the mouse. III. Treatment of sperm with trypaflavine, toluidine blue, or nitrogen mustard. Proc R Soc Lond Ser B Biol Sci 149:117–129
CrossRef
Google scholar
|
[15] |
Egli D, Chen Alice E, Saphier G, Powers D, Alper M, Katz K, Berger B, Goland R, Leibel Rudolph L, Melton Douglas A
CrossRef
Google scholar
|
[16] |
Elling U, Penninger JM (2014) Genome wide functional genetics in haploid cells. FEBS Lett 588:2415–2421
CrossRef
Google scholar
|
[17] |
Elling U, Taubenschmid J, Wirnsberger G, O’Malley R, Demers SP, Vanhaelen Q, Shukalyuk AI, Schmauss G, Schramek D, Sch-nuetgen F
CrossRef
Google scholar
|
[18] |
Elling U, Wimmer RA, Leibbrandt A, Burkard T, Michlits G, Leopoldi A, Micheler T, Abdeen D, Zhuk S, Aspalter IM
CrossRef
Google scholar
|
[19] |
Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575
CrossRef
Google scholar
|
[20] |
Forment JV, Herzog M, Coates J, Konopka T, Gapp BV, Nijman SM, Adams DJ, Keane TM, Jackson SP (2016) Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells. Nat Chem Biol 13:12–14
CrossRef
Google scholar
|
[21] |
Forsburg SL (2001) The art and design of genetic screens: yeast. Nat Rev Genet 2:659–668
CrossRef
Google scholar
|
[22] |
Freimann R, Wutz A (2017) A fast and efficient size separation method for haploid embryonic stem cells. Biomicrofluidics 11:054117
CrossRef
Google scholar
|
[23] |
Giaever G, Nislow C (2014) The yeast deletion collection: a decade of functional genomics. Genetics 197:451–465
CrossRef
Google scholar
|
[24] |
Grimm S (2004) The art and design of genetic screens: mammalian culture cells. Nat Rev Genet 5:179–189
CrossRef
Google scholar
|
[25] |
Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136:1063–1069
CrossRef
Google scholar
|
[26] |
He W, Zhang X, Zhang Y, Zheng W, Xiong Z, Hu X, Wang M, Zhang L, Zhao K, Qiao Z
CrossRef
Google scholar
|
[27] |
He ZQ, Xia BL, Wang YK, Li J, Feng GH, Zhang LL, Li YH, Wan HF, Li TD, Xu K
CrossRef
Google scholar
|
[28] |
Hiramoto Y (1962) An analysis of the mechanism of fertilization by means of enucleation of sea urchin eggs. Exp Cell Res 28:323–334
CrossRef
Google scholar
|
[29] |
Horii T, Hatada I (2015) Genome editing using mammalian haploid cells. IntJ Mol Sci 16:23604–23614
CrossRef
Google scholar
|
[30] |
Kaufman MH (1978) Chromosome analysis of early postimplantation presumptive haploid parthenogenetic mouse embryos. JEmbryol Exp Morphol 45:85–91
|
[31] |
Kaufman MH, Robertson EJ, Handyside AH, Evans MJ (1983) Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 73:249–261
|
[32] |
Kim K, Ng K, Rugg-Gunn PJ, Shieh JH, Kirak O, Jaenisch R, Wakayama T, Moore MA, Pedersen RA, Daley GQ (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:346–352
CrossRef
Google scholar
|
[33] |
Kotecki M, Reddy PS, Cochran BH (1999) Isolation and character-ization of a near-haploid human cell line. Exp Cell Res 252:273–280
CrossRef
Google scholar
|
[34] |
Latos PA, Hemberger M (2016) From the stem of the placental tree: trophoblast stem cells and their progeny. Development 143:3650–3660
CrossRef
Google scholar
|
[35] |
Lebensohn AM, Dubey R, Neitzel LR, Tacchelly-Benites O, Yang E, Marceau CD, Davis EM, Patel BB, Bahrami-Nejad Z, Travaglini KJ
CrossRef
Google scholar
|
[36] |
Leeb M, Dietmann S, Paramor M, Niwa H, Smith A (2014) Genetic exploration of the exit from self-renewalusing haploid embryonic stem cells. Cell Stem Cell 14:385–393
CrossRef
Google scholar
|
[37] |
Leeb M, Walker R, Mansfield B, Nichols J, Smith A, Wutz A (2012) Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development 139:3301–3305
CrossRef
Google scholar
|
[38] |
Leeb M, Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479:131–134
CrossRef
Google scholar
|
[39] |
Li W, Li X, Li T, Jiang MG, Wan H, Luo GZ, Feng C, Cui X, Teng F, Yuan Y
CrossRef
Google scholar
|
[40] |
Li W, Shuai L, Wan H, Dong M, Wang M, Sang L, Feng C, Luo GZ, Li T, Li X
CrossRef
Google scholar
|
[41] |
Li W, Zhou Q (2017) New stem cell types for versatile applications. Natl Sci Rev 4:528–530
CrossRef
Google scholar
|
[42] |
Li X, Cui XL, Wang JQ, Wang YK, Li YF, Wang LY, Wan HF, Li TD, Feng GH, Shuai L
CrossRef
Google scholar
|
[43] |
Li Y, Shuai L (2017)Aversatile genetic tool: haploid cells. Stem Cell Res Ther 8:197
CrossRef
Google scholar
|
[44] |
Li Z, Wan H, Feng G, Wang L, He Z, Wang Y, Wang XJ, Li W, Zhou Q, Hu B (2016b) Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Res 26:135–138
CrossRef
Google scholar
|
[45] |
Li ZK, Wang LY, Wang LB, Feng GH, Yuan XW, Liu C, Xu K, Li YH, Wan HF, Zhang Y
CrossRef
Google scholar
|
[46] |
Liu G, Wang X, Liu Y, Zhang M, Cai T, Shen Z, Jia Y,Huang Y (2017) Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens. Nucleic Acids Res 45:e180
CrossRef
Google scholar
|
[47] |
McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183
CrossRef
Google scholar
|
[48] |
Modliński JA (1975) Haploid mouse embryos obtained by microsur-gical removalof one pronucleus. J EmbryolExp Morphol 33:897–905
|
[49] |
Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F, Thore S, Wutz A (2015) Identification of spen as a crucial factor for xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep 12:554–561
CrossRef
Google scholar
|
[50] |
Olbrich T, Mayor-Ruiz C, Vega-Sendino M, Gomez C, Ortega S, Ruiz S, Fernandez-Capetillo O (2017) A p53-dependent response limits the viability of mammalian haploid cells. Proc Natl Acad Sci 114:9367–9372
CrossRef
Google scholar
|
[51] |
Pamilo P, Crozier RH (1981) Genic variation in male haploids under deterministic selection. Genetics 98:199–214
|
[52] |
Paquin C, Adams J (1983) Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302:495–500
CrossRef
Google scholar
|
[53] |
Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA
CrossRef
Google scholar
|
[54] |
Peng K, Li X, Wu C, Wang Y, Yu J, Zhang J, Gao Q, Zhang W, Zhang Q, Fan Y
CrossRef
Google scholar
|
[55] |
Perrot V, Richerd S, Valero M (1991) Transition from haploidy to diploidy. Nature 351:315–317
CrossRef
Google scholar
|
[56] |
Potapova TA, Zhu J, Li R (2013) Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev 32:377–389
CrossRef
Google scholar
|
[57] |
Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449
CrossRef
Google scholar
|
[58] |
Sagi I, Benvenisty N (2017) Haploidy in humans: an evolutionary and developmental perspective. Dev Cell 41:581–589
CrossRef
Google scholar
|
[59] |
Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature 532:107–111
CrossRef
Google scholar
|
[60] |
Shalem O, Sanjana NE, Zhang Fx (2015) High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet 16:299–311
CrossRef
Google scholar
|
[61] |
Shuai L, Wang Y, Dong M, Wang X, Sang L, Wang M, Wan H, Luo G, Gu T, Yuan Y
CrossRef
Google scholar
|
[62] |
Silk AD, Zasadil LM, Holland AJ, Vitre B, Cleveland DW, Weaver BA (2013) Chromosome missegregation rate predicts whether ane-uploidy will promote or suppress tumors. Proc Natl Acad Sci USA 110:E4134–4141
CrossRef
Google scholar
|
[63] |
Staring J, von Castelmur E, Blomen VA, van den Hengel LG, Brockmann M, Baggen J, Thibaut HJ, Nieuwenhuis J, Janssen H, van Kuppeveld FJ
CrossRef
Google scholar
|
[64] |
Surani MA, Barton SC (1983) Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222:1034–1036
CrossRef
Google scholar
|
[65] |
Surani MA, Barton SC, Norris ML (1984) Development of reconsti-tuted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550
CrossRef
Google scholar
|
[66] |
Surani MA, Kothary R, Singh PB, Fundele R, Ferguson-Smith AC, Barton SC (1990) Genome imprinting and development in the mouse. Dev Suppl 1990:89–98
|
[67] |
Takahashi S, Lee J, Kohda T, Matsuzawa A, Kawasumi M, Kanai-Azuma M, Kaneko-Ishino T, Ishino F (2014) Inductionof the G2/M transition stabilizes haploid embryonic stem cells. Development 141:3842–3847
CrossRef
Google scholar
|
[68] |
Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130:6155–6163
CrossRef
Google scholar
|
[69] |
Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblaststem cell proliferation by FGF4. Science 282:2072–2075
CrossRef
Google scholar
|
[70] |
Tarkowski AK, Rossant J (1976) Haploid mouse blastocysts devel-oped from bisected zygotes. Nature 259:663–665
CrossRef
Google scholar
|
[71] |
Tarkowski AK, Witkowska A, Nowicka J (1970) Experimental partheonogenesis in the mouse. Nature 226:162–165
CrossRef
Google scholar
|
[72] |
Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199
CrossRef
Google scholar
|
[73] |
Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180:665–672
CrossRef
Google scholar
|
[74] |
Wan H, He Z, Dong M, Gu T, Luo GZ, Teng F, Xia B, Li W, Feng C, Li X
CrossRef
Google scholar
|
[75] |
Wang H, Zhang W, Yu J, Wu C, Gao Q, Li X, Li Y, Zhang J, Tian Y, Tan T
CrossRef
Google scholar
|
[76] |
Wutz A (2014) Haploid mouse embryonic stem cells: rapid genetic screening and germline transmission. Annu Rev Cell Dev Biol 30:705–722
CrossRef
Google scholar
|
[77] |
Xu H, Yue C, Zhang T, Li Y, Guo A, Liao J, Pei G, Li J, Jing N (2017) Derivation of haploid neurons from mouse androgenetic haploid embryonic stem cells. Neurosci Bull 33:361–364
CrossRef
Google scholar
|
[78] |
Yan H, Papadopoulos N, Marra G, Perrera C, Jiricny J, Boland CR, Lynch HT, Chadwick RB, de la Chapelle A, Berg K
CrossRef
Google scholar
|
[79] |
Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H
CrossRef
Google scholar
|
[80] |
Yang H, Shi L, Wang BA, Liang D, Zhong C, Liu W, Nie Y, Liu J, Zhao J, Gao X
CrossRef
Google scholar
|
[81] |
Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433
CrossRef
Google scholar
|
[82] |
Yilmaz A, Peretz M, Sagi I, Benvenisty N (2016) Haploid human embryonic stem cells: half the genome, double the value. Cell Stem Cell 19:569–572
CrossRef
Google scholar
|
[83] |
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground stateof embryonic stem cell self-renewal. Nature 453:519–523
CrossRef
Google scholar
|
[84] |
Zhong C, Yin Q, Xie Z, Bai M, Dong R, Tang W, Xing YH, Zhang H, Yang S, Chen LL
CrossRef
Google scholar
|
/
〈 | 〉 |