Propofol reduces synaptic strength by inhibiting sodium and calcium channels at nerve terminals

Qing-Zhuo Liu, Mei Hao, Zi-Yang Zhou, Jian-Long Ge, Yi-Chen Wu, Ling-Ling Zhao, Xiang Wu, Yi Feng, Hong Gao, Shun Li, Lei Xue

PDF(869 KB)
PDF(869 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (9) : 688-693. DOI: 10.1007/s13238-019-0624-1
LETTER
LETTER

Propofol reduces synaptic strength by inhibiting sodium and calcium channels at nerve terminals

Author information +
History +

Cite this article

Download citation ▾
Qing-Zhuo Liu, Mei Hao, Zi-Yang Zhou, Jian-Long Ge, Yi-Chen Wu, Ling-Ling Zhao, Xiang Wu, Yi Feng, Hong Gao, Shun Li, Lei Xue. Propofol reduces synaptic strength by inhibiting sodium and calcium channels at nerve terminals. Protein Cell, 2019, 10(9): 688‒693 https://doi.org/10.1007/s13238-019-0624-1

References

[1]
Bademosi AT, Steeves J, Karunanithi S, Zalucki OH, Gormal RS, Liu S, Lauwers E, Verstreken P, Anggono V, Meunier FA (2018) Trapping of syntaxin1a in presynaptic nanoclusters by a clinically relevant general anesthetic. Cell Rep 22:427–440
CrossRef Google scholar
[2]
Bissonnette B (2011) Pediatr Anesth. Pmph, USA
[3]
Cotten JF, Husain SS, Forman SA, Miller KW, Kelly EW, Nguyen HH, Raines DE (2009) Methoxycarbonyl-etomidate: a novel rapidlymetabolized and ultra-short-acting etomidate analogue that does not produce prolonged adrenocortical suppression. Anesthesiology 111:240–249
CrossRef Google scholar
[4]
Haeseler G, Stormer M, Bufler J, Dengler R, Hecker H, Piepenbrock S, Leuwer M (2001) Propofol blocks human skeletal muscle sodium channels in a voltage-dependent manner. Anesth Analg 92:1192–1198
CrossRef Google scholar
[5]
He YL, Zhan XQ, Yang G, Sun J, Mei YA (2010) Amoxapine inhibits the delayed rectifier outward K+ current in mouse cortical neurons via cAMP/protein kinase A pathways. J Pharmacol Exp Ther 332:437–445
CrossRef Google scholar
[6]
Iida H, Matsuura S, Shirakami G, Tanimoto K, Fukuda K (2006) Differential effects of intravenous anesthetics on ciliary motility in cultured rat tracheal epithelial cells. Can J Anaesth 53:242–249
CrossRef Google scholar
[7]
Ishizaki K, Yoshida N, Yoon DM, Yoon MH, Sudoh M, Fujita T (1996) Intrathecally administered NMDA receptor antagonists reduce the MAC of isoflurane in rats. Can J Anaesth 43:724–730
CrossRef Google scholar
[8]
Iwasaki S, Momiyama A, Uchitel OD, Takahashi T (2000) Developmental changes in calcium channel types mediating central synaptic transmission. J Neuorsci 20:59–65
CrossRef Google scholar
[9]
Lingamaneni R, Birch ML, Hemmings HC Jr (2001) Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol. Anesthesiology 95:1460–1466
CrossRef Google scholar
[10]
Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL (2014) Miller’s anesthesia, 8th edn. Elsevier, Amsterdam
[11]
Sun ZC, Ge JL, Guo B, Guo J, Hao M, Wu YC, Lin YA, La T, Yao PT, Mei YA (2016) Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. Sci Rep 6:21774
CrossRef Google scholar
[12]
Wu XS, McNeil BD, Xu J, Fan J, Xue L, Melicoff E, Adachi R, Bai L, Wu LG (2009) Ca(2+) and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 12:1003–1010
CrossRef Google scholar
[13]
Wu XS, Sun JY, Evers AS, Crowder M, Wu LG (2004) Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 100:663–670
CrossRef Google scholar
[14]
Zhang Y, Wu S, Eger EI, Sonner JM (2001) Neither GABA(A) nor strychnine-sensitive glycine receptors are the sole mediators of MAC for isoflurane. Anesth Analg 92:123–127
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s) 2019
AI Summary AI Mindmap
PDF(869 KB)

Accesses

Citations

Detail

Sections
Recommended

/