Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction
Si Wang, Zheying Min, Qianzhao Ji, Lingling Geng, Yao Su, Zunpeng Liu, Huifang Hu, Lixia Wang, Weiqi Zhang, Keiichiro Suzuiki, Yu Huang, Puyao Zhang, Tie-Shan Tang, Jing Qu, Yang Yu, Guang-Hui Liu, Jie Qiao
Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction
Cockayne syndrome (CS) is a rare autosomal reces-sive inherited disorder characterized by a variety of clinical features, including increased sensitivity to sun-light, progressive neurological abnormalities, and the appearance of premature aging. However, the pathogenesis of CS remains unclear due to the limita-tions of current disease models. Here, we generate integration-free induced pluripotent stem cells (iPSCs) from fibroblasts from a CS patient bearing mutations in CSB/ERCC6 gene and further derive isogenic gene-corrected CS-iPSCs (GC-iPSCs) using the CRISPR/Cas9 system. CS-associated phenotypic defects are recapit-ulated in CS-iPSC-derived mesenchymal stem cells (MSCs) and neural stem cells (NSCs), both of which display increased susceptibility to DNA damage stress. Premature aging defects in CS-MSCs are rescued by the targeted correction of mutant ERCC6. We next map the transcriptomic landscapes in CS-iPSCs and GC-iPSCs and their somatic stem cell derivatives (MSCs and NSCs) in the absence or presence of ultraviolet (UV) and replicative stresses, revealing that defects in DNA repair account for CS pathologies. Moreover, we generate autologous GC-MSCs free of pathogenic mutation under a cGMP (Current Good Manufacturing Practice)-compli- ant condition, which hold potential for use as improved biomaterials for future stem cell replacement therapy for CS. Collectively, our models demonstrate novel disease features and molecular mechanisms and lay a founda- tion for the development of novel therapeutic strategies to treat CS.
Cockayne syndrome / CRISPR/Cas9 / gene correction / disease modelling / mesenchymal stem cell / neural stem cell
[1] |
Amaro-Ortiz A, Yan B, D’Orazio JA (2014) Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipula-tion. Molecules 19:6202–6219
CrossRef
Google scholar
|
[2] |
Anders S, Pyl PT, Huber W (2015) HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169
CrossRef
Google scholar
|
[3] |
Andrade LN, Nathanson JL, Yeo GW, Menck CF, Muotri AR (2012) Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Hum Mol Genet 21:3825–3834
CrossRef
Google scholar
|
[4] |
Andressoo JO, Mitchell JR, de Wit J, Hoogstraten D, Volker M, Toussaint W, Speksnijder E, Beems RB, van Steeg H, Jans J
CrossRef
Google scholar
|
[5] |
Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475
CrossRef
Google scholar
|
[6] |
Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17
CrossRef
Google scholar
|
[7] |
Castro-Vinuelas R, Sanjurjo-Rodriguez C, Pineiro-Ramil M, Her-mida-Gomez T, Fuentes-Boquete IM, de Toro-Santos FJ, Blanco-Garcia FJ, Diaz-Prado SM (2018) Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater 36:96–109
CrossRef
Google scholar
|
[8] |
Ciaffardini F, Nicolai S, Caputo M, Canu G, Paccosi E, Costantino M, Frontini M, Balajee AS, Proietti-De-Santis L (2014) The cockayne syndrome B protein is essential for neuronal differentiation and neuritogenesis. Cell Death Dis 5:e1268
CrossRef
Google scholar
|
[9] |
Cleaver JE, Lam ET, Revet I (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10:756–768
CrossRef
Google scholar
|
[10] |
Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galac-tosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806
CrossRef
Google scholar
|
[11] |
Ding Z, Sui L, Ren R, Liu Y, Xu X, Fu L, Bai R, Yuan T, Hao Y, Zhang W
CrossRef
Google scholar
|
[12] |
Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, Wu J, Xu X, Fu L, Li Y
CrossRef
Google scholar
|
[13] |
Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33
CrossRef
Google scholar
|
[14] |
Friedberg EC (2003) DNA damage and repair. Nature 421:436–440
CrossRef
Google scholar
|
[15] |
Fu LN, Xu XL, Ren RT, Wu J, Zhang WQ, Yang JP, Ren XQ, Wang S, Zhao Y, Sun L
CrossRef
Google scholar
|
[16] |
Geng L, Liu Z, Zhang W, Li W, Wu Z, Wang W, Ren R, Su Y, Wang P, Sun L
CrossRef
Google scholar
|
[17] |
Golpanian S, DiFede DL, Pujol MV, Lowery MH, Levis-Dusseau S, Goldstein BJ, Schulman IH, Longsomboon B, Wolf A, Khan A
CrossRef
Google scholar
|
[18] |
Golpanian S, DiFede DL, Khan A, Schulman IH, Landin AM, Tompkins BA, Heldman AW, Miki R, Goldstein BJ, Mushtaq M
CrossRef
Google scholar
|
[19] |
Gorgels TG, van der Pluijm I, Brandt RM, Garinis GA, van Steeg H, van den Aardweg G, Jansen GH, Ruijter JM, Bergen AA, van Norren D
CrossRef
Google scholar
|
[20] |
Hishiya A, Watanabe K (2004) Progeroid syndrome as a model for impaired bone formation in senile osteoporosis. J Bone Miner Metab 22:399–403
CrossRef
Google scholar
|
[21] |
Jaarsma D, van der Pluijm I,de Waard MC, Haasdijk ED, Brandt R, Vermeij M, Rijksen Y, Maas A, van Steeg H, Hoeijmakers JH
CrossRef
Google scholar
|
[22] |
Karikkineth AC, Scheibye-Knudsen M, Fivenson E, Croteau DL, Bohr VA (2017) Cockayne syndrome: clinical features, model systems and pathways. Ageing Res Rev 33:3–17
CrossRef
Google scholar
|
[23] |
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisua Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144
CrossRef
Google scholar
|
[24] |
Kemp MG, Spandau DF, Travers JB (2017) Impact of age and insulin-like growth factor-1 on DNA damage responses in UV-irradiated human skin. Molecules 22:356
CrossRef
Google scholar
|
[25] |
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
CrossRef
Google scholar
|
[26] |
Kubben N, Zhang W, Wang L, Voss TC, Yang J, Qu J, Liu GH, Misteli T (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361–1374
CrossRef
Google scholar
|
[27] |
Laugel V (2013) Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev 134:161–170
CrossRef
Google scholar
|
[28] |
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760
CrossRef
Google scholar
|
[29] |
Li Y, Zhang W, Chang L, Han Y, Sun L, Gong X, Tang H, Liu Z, Deng H, Ye Y
CrossRef
Google scholar
|
[30] |
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q
CrossRef
Google scholar
|
[31] |
Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C
CrossRef
Google scholar
|
[32] |
Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD
CrossRef
Google scholar
|
[33] |
Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W
CrossRef
Google scholar
|
[34] |
Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, Gu Y, Yi F, Xu X, Zhang W
CrossRef
Google scholar
|
[35] |
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
CrossRef
Google scholar
|
[36] |
McKay BC, Cabrita MA (2013) Arresting transcription and sentenc-ing the cell: the consequences of blocked transcription. Mech Ageing Dev 134:243–252
CrossRef
Google scholar
|
[37] |
Muller LU, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, Moreau LA, Schambach A, Park IH, London WB
CrossRef
Google scholar
|
[38] |
Murai M, Enokido Y, Inamura N, Yoshino M, Nakatsu Y, van der Horst GT, Hoeijmakers JH, Tanaka K, Hatanaka H (2001) Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syn-drome Group B DNA repair genes. Proc Natl Acad Sci USA 98:13379–13384
CrossRef
Google scholar
|
[39] |
Natale V (2011) A comprehensive description of the severity groups in Cockayne syndrome. Am J Med Genet A 155A:1081–1095
CrossRef
Google scholar
|
[40] |
Newman JC, Bailey AD, Weiner AM (2006) Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. Proc Natl Acad Sci USA 103:9613–9618
CrossRef
Google scholar
|
[41] |
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K
CrossRef
Google scholar
|
[42] |
Orozco L, Soler R, Morera C, Alberca M, Sanchez A, Garcia-Sancho J (2011) Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 92:822–828
CrossRef
Google scholar
|
[43] |
Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 95:1535–1541
CrossRef
Google scholar
|
[44] |
Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J (2014) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results. Transplantation 97:e66–e68
CrossRef
Google scholar
|
[45] |
Pan H, Guan D, Liu X, Li J, Wang L, Wu J, Zhou J, Zhang W, Ren R, Li Y
CrossRef
Google scholar
|
[46] |
Peters DT, Cowan CA, Musunuru K (2008) Genome editing in human pluripotent stem cells. In: StemBook, Cambridge
|
[47] |
Proietti-De-Santis L, Drane P, Egly JM (2006) Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J 25:1915–1923
CrossRef
Google scholar
|
[48] |
Rockx DA, Mason R, van Hoffen A, Barton MC, Citterio E, Bregman DB, van Zeeland AA, Vrieling H, Mullenders LH (2000) UV-induced inhibition of transcription involves repression of tran-scription initiation and phosphorylation of RNA polymerase II. Proc Natl Acad Sci USA 97:10503–10508
CrossRef
Google scholar
|
[49] |
Sacco R, Tamblyn L, Rajakulendran N, Bralha FN, Tropepe V, Laposa RR (2013) Cockayne syndrome b maintains neural precursor function. DNA Repair 12:110–120
CrossRef
Google scholar
|
[50] |
Setlow RB, Setlow JK (1962) Evidence that ultraviolet-induced thymine dimers in DNA cause biological damage. Proc Natl Acad Sci USA 48:1250–1257
CrossRef
Google scholar
|
[51] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
CrossRef
Google scholar
|
[52] |
Shehata L, Simeonov DR, Raams A, Wolfe L, Vanderver A, Li X, Huang Y, Garner S, Boerkoel CF, Thurm A
CrossRef
Google scholar
|
[53] |
Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, Oshimura M, Ishigaki Y, Hamasaki K, Kodama Y
CrossRef
Google scholar
|
[54] |
Soontararak S, Chow L, Johnson V, Coy J, Wheat W, Regan D, Dow S (2018) Mesenchymal stem cells (MSC) derived from induced pluripotent stem cells (iPSC) equivalent to adipose-derived MSC in promoting intestinal healing and microbiome normalization in mouse inflammatory bowel disease model. Stem Cells Transl Med 7:456–467
CrossRef
Google scholar
|
[55] |
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z
CrossRef
Google scholar
|
[56] |
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P
CrossRef
Google scholar
|
[57] |
Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de Magalhaes JP (2013) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res 41:D1027–D1033
CrossRef
Google scholar
|
[58] |
Tompkins BA, DiFede DL, Khan A, Landin AM, Schulman IH, Pujol MV, Heldman AW, Miki R, Goldschmidt-Clermont PJ, Goldstein BJ
CrossRef
Google scholar
|
[59] |
Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC
CrossRef
Google scholar
|
[60] |
van der Horst GT, van Steeg H, Berg RJ, van Gool AJ, de Wit J, Weeda G, Morreau H, Beems RB, van Kreijl CF, de Gruijl FR
CrossRef
Google scholar
|
[61] |
van der Horst GT, Meira L, Gorgels TG, de Wit J, Velasco-Miguel S, Richardson JA, Kamp Y, Vreeswijk MP, Smit B, Bootsma D
CrossRef
Google scholar
|
[62] |
van der Pluijm I, Garinis GA, Brandt RM, Gorgels TG, Wijnhoven SW, Diderich KE, de Wit J, Mitchell JR, van Oostrom C, Beems R
CrossRef
Google scholar
|
[63] |
Velez-Cruz R, Egly JM (2013) Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks. Mech Ageing Dev 134:234–242
CrossRef
Google scholar
|
[64] |
Velez-Cruz R, Zadorin AS, Coin F, Egly JM (2013) Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells. Proc Natl Acad Sci USA 110:E212–E220
CrossRef
Google scholar
|
[65] |
Vessoni AT, Herai RH, Karpiak JV, Leal AM, Trujillo CA, Quinet A, Agnez Lima LF, Menck CF, Muotri AR (2016) Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony. Hum Mol Genet 25:1271–1280
CrossRef
Google scholar
|
[66] |
Wang S, Wang X, Wu Y, Han C (2015) IGF-1R signaling is essential for the proliferation of cultured mouse spermatogonial stem cells by promoting the G2/M progression of the cell cycle. Stem Cells Dev 24:471–483
CrossRef
Google scholar
|
[67] |
Wang S, Wang X, Ma L, Lin X, Zhang D, Li Z, Wu Y, Zheng C, Feng X, Liao S
CrossRef
Google scholar
|
[68] |
Wang LX, Yi F, Fu LN, Yang JP, Wang S, Wang ZX, Suzuki K, Sun L, Xu XL, Yu Y
CrossRef
Google scholar
|
[69] |
Wang P, Liu Z, Zhang X, Li J, Sun L, Ju Z, Li J, Chan P, Liu GH, Zhang W
CrossRef
Google scholar
|
[70] |
Wang S, Hu B, Ding Z, Dang Y, Wu J, Li D, Liu X, Xiao B, Zhang W, Ren R
CrossRef
Google scholar
|
[71] |
Wang S, Liu Z, Ye Y, Li B, Liu T, Zhang W, Liu GH, Zhang YA, Qu J, Xu D
CrossRef
Google scholar
|
[72] |
Wu Z, Zhang W, Song M, Wang W, Wei G, Li W, Lei J, Huang Y, Sang Y, Chan P
CrossRef
Google scholar
|
[73] |
Yamada A, Masutani C, Hanaoka F (2002) Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochim Biophys Acta 1592:129–134
CrossRef
Google scholar
|
[74] |
Yan P, Li Q, Wang L, Lu P, Suzuki K, Liu Z, Lei J, Li W, He X, Wang S
CrossRef
Google scholar
|
[75] |
Yang J, Li J, Suzuki K, Liu X, Wu J, Zhang W, Ren R, Zhang W, Chan P, Izpisua Belmonte JC
CrossRef
Google scholar
|
[76] |
Yu QC, Song W, Wang D, Zeng YA (2016) Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res 26:1079–1098
CrossRef
Google scholar
|
[77] |
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A
CrossRef
Google scholar
|
[78] |
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z
CrossRef
Google scholar
|
[79] |
Zhang X, Liu Z, Liu X, Wang S, Zhang Y, He X, Sun S, Ma S, Shyh-Chang N, Liu F
CrossRef
Google scholar
|
/
〈 | 〉 |