Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells
Chen Ling, Zunpeng Liu, Moshi Song, Weiqi Zhang, Si Wang, Xiaoqian Liu, Shuai Ma, Shuhui Sun, Lina Fu, Qun Chu, Juan Carlos Izpisua Belmonte, Zhaoxia Wang, Jing Qu, Yun Yuan, Guang-Hui Liu
Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient’s iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSCbased disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
CADASIL / iPSC / NOTCH / NF-κB / vascular smooth muscle
[1] |
Agrinier N, Thilly N, Boivin JM, Dousset B, Alla F, Zannad F (2013) Prognostic value of serum PIIINP, MMP1 and TIMP1 levels in hypertensive patients: a community-based prospective cohort study. Fundam Clin Pharmacol 27:572–580
CrossRef
Google scholar
|
[2] |
Anders S, Pyl PT, Huber W (2015) HTSeq—a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169
CrossRef
Google scholar
|
[3] |
Andersen P, Uosaki H, Shenje LT, Kwon C (2012) Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol 22:257–265
CrossRef
Google scholar
|
[4] |
Andersson ER, Lendahl U (2014) Therapeutic modulationof Notch signalling–are we there yet? Nat Rev Drug Discov 13:357–378
CrossRef
Google scholar
|
[5] |
Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612
CrossRef
Google scholar
|
[6] |
Ayaz F, Osborne BA (2014) Non-canonical notch signalingin cancer and immunity. Front Oncol 4:345
CrossRef
Google scholar
|
[7] |
Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22
CrossRef
Google scholar
|
[8] |
Baron-Menguy C, Domenga-Denier V, Ghezali L, Faraci FM, Joutel A (2017) Increased Notch3 activity mediates pathological changes in structure of cerebral arteries. Hypertension 69:60–70
CrossRef
Google scholar
|
[9] |
Bin Q, Robert GN, Qing-Xiang Amy S (2009) ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr Pharm Des 15:2336–2348
CrossRef
Google scholar
|
[10] |
Bonnefoy A, Moura R, Hoylaerts MF (2008) The evolving role of thrombospondin-1 in hemostasis and vascular biology. Cell Mol Life Sci 65:713–727
CrossRef
Google scholar
|
[11] |
Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D (1996) Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Investig 97:1715–1722
CrossRef
Google scholar
|
[12] |
Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17:722
CrossRef
Google scholar
|
[13] |
Capone C, Cognat E, Ghezali L, Baron-Menguy C, Aubin D, Mesnard L, Stohr H, Domenga-Denier V, Nelson MT, Joutel A (2016) Reducing Timp3 or vitronectin ameliorates disease manifestations in CADASIL mice. Ann Neurol 79:387–403
CrossRef
Google scholar
|
[14] |
Chabriat H, Pappata S, Ostergaard L, Clark CA, Pachot-Clouard M, Vahedi K, Jobert A, Le Bihan D, Bousser MG (2000) Cerebral hemodynamics in CADASIL before and after acetazolamide challengeassessedwithMRIbolustracking. Stroke 31:1904–1912
CrossRef
Google scholar
|
[15] |
Chen JH, Vercamer C, Li Z, Paulin D, Vandenbunder B, Stehelin D (1996) PEA3 transactivates vimentin promoter in mammary epithelial and tumor cells. Oncogene 13:1667–1675
|
[16] |
Chistiakov DA, Orekhov AN, Bobryshev YV (2015) Vascular smooth muscle cell in atherosclerosis. Acta Physiol 214:33–50
CrossRef
Google scholar
|
[17] |
Craggs LJ, Fenwick R, Oakley AE, Ihara M, Kalaria RN (2015) Immunolocalization of platelet-derived growth factor receptor-beta (PDGFR-beta) and pericytes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Neuropathol Appl Neurobiol 41:557–570
CrossRef
Google scholar
|
[18] |
Di Donato I, Bianchi S, De Stefano N, Dichgans M, Dotti MT, Duering M, Jouvent E, Korczyn AD, Lesnik-Oberstein SA, Malandrini A
CrossRef
Google scholar
|
[19] |
Dinh QN, Drummond GR, Sobey CG, Chrissobolis S (2014) Rolesof inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int 2014:406960
CrossRef
Google scholar
|
[20] |
Dollery CM, Libby P (2006) Atherosclerosis and proteinase activation. Cardiovasc Res 69:625–635
CrossRef
Google scholar
|
[21] |
Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z
CrossRef
Google scholar
|
[22] |
Donahue CP, Kosik KS (2004) Distribution pattern of Notch3 mutations suggests a gain-of-function mechanism for CADASIL. Genomics 83:59–65
CrossRef
Google scholar
|
[23] |
Dong H, Blaivas M, Wang MM (2012) Bidirectional encroachmentof collagen into the tunica media in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Res 1456:64–71
CrossRef
Google scholar
|
[24] |
Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, Wu J, Xu X, Fu L, Li Y
CrossRef
Google scholar
|
[25] |
Duering M, Karpinska A, Rosner S, Hopfner F, Zechmeister M, Peters N, Kremmer E, Haffner C, Giese A, Dichgans M
CrossRef
Google scholar
|
[26] |
Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289
CrossRef
Google scholar
|
[27] |
Fang XJ, Yu M, Wu Y, Zhang ZH, Wang WW, Wang ZX, Yuan Y (2017) Study of enhanced depth imaging optical coherence tomography in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Chin MedJ (Engl) 130:1042–1048
CrossRef
Google scholar
|
[28] |
Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492
CrossRef
Google scholar
|
[29] |
Fogl C, Mohammed F, Al-Jassar C, Jeeves M, Knowles TJ, Rodriguez-Zamora P, White SA, Odintsova E, Overduin M, Chidgey M (2016) Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin. Nat Commun 7:10827
CrossRef
Google scholar
|
[30] |
Fu L, Xu X, Ren R, Wu J, Zhang W, Yang J, Ren X, Wang S, Zhao Y, Sun L
CrossRef
Google scholar
|
[31] |
Fuertes-Alvarez S, Maeso-Alonso L, Villoch-Fernandez J, Wildung M, Martin-Lopez M, Marshall C, Villena-Cortes AJ, Diez-Prieto I, Pietenpol JA, Tissir F
CrossRef
Google scholar
|
[32] |
Gatti JR, Zhang X, Korcari E, Lee SJ, Greenstone N, Dean JG, Maripudi S, Wang MM (2018) Redistribution of mature smooth muscle markers in brain arteries in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Transl Stroke Res. https://doi.org/10.1007/ s12975-018-0643-x
|
[33] |
Geng L, Liu Z, Zhang W, Li W, Wu Z, Wang W, Ren R, Su Y, Wang P, Sun L
|
[34] |
Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N (2015) Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 78:887–900
CrossRef
Google scholar
|
[35] |
Goate AM, Morris JC (1997) Notch3 mutations and the potential for diagnostic testing for CADASIL. Lancet (Lond, Engl) 350:1490
CrossRef
Google scholar
|
[36] |
Granata A, Bernard WG, Zhao N, McCafferty J, Lilly B, Sinha S (2015) Temporal and embryonic lineage-dependent regulation of human vascular SMC developmentbyNOTCH3. Stem Cells Dev 24:846–856
CrossRef
Google scholar
|
[37] |
Gu X, Liu XY, Fagan A, Gonzalez-Toledo ME, Zhao LR (2012) Ultrastructural changes in cerebral capillary pericytes in aged Notch3 mutant transgenic mice. Ultrastruct Pathol 36:48–55
CrossRef
Google scholar
|
[38] |
Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666
CrossRef
Google scholar
|
[39] |
Haritunians T, Chow T, De Lange RP, Nichols JT, Ghavimi D, Dorrani N, St Clair DM, Weinmaster G, Schanen C (2005) Functional analysis of a recurrent missense mutation in Notch3 in CADASIL. J Neurol Neurosurg Psychiatry 76:1242–1248
CrossRef
Google scholar
|
[40] |
Henrion D, Terzi F, Matrougui K, Duriez M, Boulanger CM, Colucci-Guyon E, Babinet C, Briand P, Friedlander G, Poitevin P
CrossRef
Google scholar
|
[41] |
Herve D, Chabriat H (2010) Cadasil. J Geriatr Psychiatry Neurol 23:269–276
CrossRef
Google scholar
|
[42] |
Jin Y, Kaluza D, Jakobsson L (2014) VEGF, Notch and TGFbeta/ BMPs in regulation of sprouting angiogenesis and vascular patterning. Biochem SocTrans 42:1576–1583
CrossRef
Google scholar
|
[43] |
Joutel A (2011) Pathogenesis of CADASIL: transgenic and knockout mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. BioEssays 33:73–80
CrossRef
Google scholar
|
[44] |
Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E
CrossRef
Google scholar
|
[45] |
Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P
CrossRef
Google scholar
|
[46] |
Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssière C, Cruaud C, Maciazek J, Weissenbach J, Bousser M-G
CrossRef
Google scholar
|
[47] |
Jung JH, Fu X, Yang PC (2017) Exosomes generated from iPSCderivatives: new direction for stem cell therapy in human heart diseases. Circ Res 120:407–417
CrossRef
Google scholar
|
[48] |
Kassianidou E, Kumar S (2015) A biomechanical perspective on stress fiber structure and function. Biochim Biophys Acta 1853:3065–3074
CrossRef
Google scholar
|
[49] |
Killeen MJ, Linder M, Pontoniere P, Crea R (2014) NF-κγ signaling and chronic inflammatory diseases: exploring the potential of natural products to drive new therapeutic opportunities. Drug DiscovToday 19:373–378
CrossRef
Google scholar
|
[50] |
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memoryrequirements. Nat Methods 12:357–360
CrossRef
Google scholar
|
[51] |
Kim W-J, Kang Y-J, Suk K, Park J-E, Kwon BS, Lee W-H (2008) Comparative analysis of the expression patterns of various TNFSF/TNFRSF in atherosclerotic plaques. Immunol Invest 37:359–373
CrossRef
Google scholar
|
[52] |
Kopan R, Ilagan MX (2009) The canonical Notch signalingpathway: unfolding the activation mechanism. Cell 137:216–233
CrossRef
Google scholar
|
[53] |
Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M, Alvarez H, terBrugge KG, Hans FJ (2011) Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol 7:547–559
CrossRef
Google scholar
|
[54] |
Krishna SM, Golledge J (2013) The role of thrombospondin-1 in cardiovascular health and pathology. IntJ Cardiol 168:692–706
CrossRef
Google scholar
|
[55] |
Lacombe P, Oligo C, Domenga V, Tournier-Lasserve E, Joutel A (2005) Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 36:1053–1058
CrossRef
Google scholar
|
[56] |
Lee KE, Jee HM, Hong JY, Kim MN, Oh MS, Kim YS, Kim KW, Kim KE, Sohn MH (2018) German cockroach extract induces matrix metalloproteinase-1 expression, leading to tight junction disruptionin human airway epithelial cells. Yonsei MedJ 59:1222–1231
CrossRef
Google scholar
|
[57] |
Li M, Izpisua Belmonte JC (2016) Looking to the future following 10 years of induced pluripotent stem cell technologies. Nat Protoc 11:1579–1585
CrossRef
Google scholar
|
[58] |
Li M, Suzuki K, Qu J, Saini P, Dubova I, Yi F, Lee J, Sancho-Martinez I, Liu GH, Izpisua Belmonte JC (2011) Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res 21:1740–1744
CrossRef
Google scholar
|
[59] |
Li R, Fang F, Jiang M, Wang C, Ma J, Kang W, Zhang Q, Miao Y, Wang D, Guo Y
CrossRef
Google scholar
|
[60] |
Li X, Zhang X, Leathers R, Makino A, Huang C, Parsa P, Macias J, Yuan JX, Jamieson SW, Thistlethwaite PA (2009) Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 15:1289–1297
CrossRef
Google scholar
|
[61] |
Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C
CrossRef
Google scholar
|
[62] |
Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W
CrossRef
Google scholar
|
[63] |
Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, Gu Y, Yi F, Xu X, Zhang W
CrossRef
Google scholar
|
[64] |
Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD
CrossRef
Google scholar
|
[65] |
Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B (2010) Notch3 is critical for proper angiogenesis and mural cell investment. Circ Res 107:860–870
CrossRef
Google scholar
|
[66] |
Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP (2013) Diabetes mellitus and inflammation. Curr Diabetes Rep 13:435–444
CrossRef
Google scholar
|
[67] |
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
CrossRef
Google scholar
|
[68] |
Lyon CA, Wadey KS, George SJ (2016) Soluble N-cadherin:a novel inhibitor of VSMC proliferation and intimal thickening. Vascul Pharmacol 78:53–62
CrossRef
Google scholar
|
[69] |
Meng H, Zhang X, Yu G, Lee SJ, Chen YE, Prudovsky I, Wang MM (2012) Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3. PLoS ONE 7:e44964
CrossRef
Google scholar
|
[70] |
Miao Q, Paloneva T, Tuisku S, Roine S, Poyhonen M, Viitanen M, Kalimo H(2006) Arterioles of the lenticular nucleus in CADASIL. Stroke 37:2242–2247
CrossRef
Google scholar
|
[71] |
Miao Q, Paloneva T, Tuominen S, Poyhonen M, Tuisku S, Viitanen M, Kalimo H (2004) Fibrosis and stenosis of the long penetrating cerebral arteries: the cause of the white matter pathology in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Pathol 14:358–364
CrossRef
Google scholar
|
[72] |
Monet-Lepretre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, Dussaule C, Cognat E, Vinh J, Joutel A (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136:1830–1845
CrossRef
Google scholar
|
[73] |
Moreton FC, Cullen B, Delles C, Santosh C, Gonzalez RL, Dani K, Muir KW (2017) Vasoreactivity in CADASIL: comparison to structural MRI and neuropsychology. J Cereb Blood Flow Metab 1:1–2. https://doi.org/10.1177/0271678X17710375
CrossRef
Google scholar
|
[74] |
Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93:9090–9095
CrossRef
Google scholar
|
[75] |
Noseda M, Fu Y, Niessen K, Wong F, Chang L, McLean G, Karsan A (2006) Smooth Muscle alpha-actin is a direct target of Notch/ CSL. Circ Res 98:1468–1470
CrossRef
Google scholar
|
[76] |
Okeda R, Arima K, Kawai M (2002) Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter: examination of cerebral medullary arteries by reconstruction of serial sections of an autopsy case. Stroke 33:2565–2569
CrossRef
Google scholar
|
[77] |
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K
CrossRef
Google scholar
|
[78] |
Panahi M, Yousefi Mesri N, Samuelsson E-B, Coupland KG, Forsell C, Graff C, Tikka S, Winblad B, Viitanen M, Karlström H
CrossRef
Google scholar
|
[79] |
Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O’Sullivan JF, Grainger SJ, Kapp FG, Sun L, Christensen K
CrossRef
Google scholar
|
[80] |
Penn DL, Witte SR, Komotar RJ, Sander Connolly E Jr (2014) The role of vascular remodeling and inflammation in the pathogenesis of intracranial aneurysms. J Clin Neurosci 21:28–32
CrossRef
Google scholar
|
[81] |
Penton AL, Leonard LD, Spinner NB (2012) Notch signaling in human development and disease. Semin Cell Dev Biol 23:450–457
CrossRef
Google scholar
|
[82] |
Pfefferkorn T, von Stuckrad-Barre S, Herzog J, Gasser T, Hamann GF, Dichgans M (2001) Reduced cerebrovascular CO(2) reactivity in CADASIL: a transcranial Doppler sonography study. Stroke 32:17–21
CrossRef
Google scholar
|
[83] |
Rogers NM, Ghimire K, Calzada MJ, Isenberg JS (2017) Matricellular protein thrombospondin-1 in pulmonary hypertension: multiple pathways to disease. Cardiovasc Res 113:858–868
CrossRef
Google scholar
|
[84] |
Ruan ZB, Fu XL, Li W, Ye J, Wang RZ, Zhu L (2016) Effect of notch1, 2, 3 genes silicing on NF-kappaB signaling pathway of macrophages in patients with atherosclerosis. Biomed Pharmacother 84:666–673
CrossRef
Google scholar
|
[85] |
Ruchoux MM, Chabriat H, Bousser MG, Baudrimont M, Tournier-Lasserve E (1994) Presence of ultrastructural arterial lesions in muscle and skin vessels of patients with CADASIL. Stroke 25:2291–2292
CrossRef
Google scholar
|
[86] |
Ruchoux MM, Maurage CA (1998) Endothelial changes in muscle and skin biopsies in patients with CADASIL. Neuropathol Appl Neurobiol 24:60–65
CrossRef
Google scholar
|
[87] |
Rudijanto A (2007) The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones 39:86–93
|
[88] |
Rutten JW, Dauwerse HG, Peters DJ, Goldfarb A, Venselaar H, Haffner C, van Ommen GJ, Aartsma-Rus AM, Lesnik Oberstein SA (2016) Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept. Brain 139:1123–1135
CrossRef
Google scholar
|
[89] |
Rutten JW, Haan J, Terwindt GM, van Duinen SG, Boon EM, Lesnik Oberstein SA (2014) Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev Mol Diagn 14:593–603
CrossRef
Google scholar
|
[90] |
Shibata M, Ohtani R, Ihara M, Tomimoto H (2004) White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35:2598–2603
CrossRef
Google scholar
|
[91] |
Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA (2006) Notch1 augments NFkappaB activity by facilitating its nuclear retention. EMBO J 25:129–138
CrossRef
Google scholar
|
[92] |
Shin HM, Tilahun ME, Cho OH, Chandiran K, Kuksin CA, Keerthivasan S, Fauq AH, Golde TE, Miele L, Thome M
CrossRef
Google scholar
|
[93] |
Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294
CrossRef
Google scholar
|
[94] |
Siggers T, Gilmore TD, Barron B, Penvose A (2015) Characterizing the DNA binding site specificity of NF-kappaB with protein-binding microarrays (PBMs). Methods Mol Biol (Clifton, NJ) 1280:609–630
CrossRef
Google scholar
|
[95] |
Song Y, Zhang Y, Jiang H, Zhu Y, Liu L, Feng W, Yang L, Wang Y, Li M (2015) Activation of Notch3 promotes pulmonary arterial smooth muscle cells proliferation via Hes1/p27Kip1 signaling pathway. FEBS Open Bio 5:656–660
CrossRef
Google scholar
|
[96] |
Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP (2007) GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics 23:3251–3253
CrossRef
Google scholar
|
[97] |
Sweeney C, Morrow D, Birney YA, Coyle S, Hennessy C, Scheller A, Cummins PM, Walls D, Redmond EM, Cahill PA (2004) Notch1 and3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk dependent pathway. FASEBJ 18:1421–1423
CrossRef
Google scholar
|
[98] |
Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588
CrossRef
Google scholar
|
[99] |
Takahashi K, Adachi K, Yoshizaki K, Kunimoto S, Kalaria RN, Watanabe A (2010) Mutations in NOTCH3 cause the formation and retention of aggregates in the endoplasmic reticulum, leading to impaired cell proliferation. Hum Mol Genet 19:79–89
CrossRef
Google scholar
|
[100] |
Tikka S, Mykkanen K, Ruchoux MM, Bergholm R, Junna M, Poyhonen M, Yki-Jarvinen H, Joutel A, Viitanen M, Baumann M
CrossRef
Google scholar
|
[101] |
Tikka S, Ng YP, Di Maio G, Mykkanen K, Siitonen M, Lepikhova T, Poyhonen M, Viitanen M, Virtanen I, Kalimo H
CrossRef
Google scholar
|
[102] |
Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LCF
CrossRef
Google scholar
|
[103] |
Trivedi V, Boire A, Tchernychev B, Kaneider NC, Leger AJ, O’Callaghan K, Covic L, Kuliopulos A (2009) Platelet matrix metalloprotease-1 mediates thrombogenesisby activatingPAR1 at a cryptic ligand site. Cell 137:332–343
CrossRef
Google scholar
|
[104] |
Tu HQ, Qin XH, Liu ZB, Song ZQ, Hu HB, Zhang YC, Chang Y, Wu M, Huang Y, Bai YF
CrossRef
Google scholar
|
[105] |
Vacca A, Felli MP, Palermo R, Di Mario G, Calce A, Di Giovine M, Frati L, Gulino A, Screpanti I (2006) Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia. EMBOJ 25:1000–1008
CrossRef
Google scholar
|
[106] |
Venkatesh D, Fredette N, Rostama B, Tang Y, Vary CP, Liaw L, Urs S (2011) RhoA-mediated signaling in Notch-induced senescence-like growth arrest and endothelial barrier dysfunction. Arterioscler ThrombVasc Biol 31:876–882
CrossRef
Google scholar
|
[107] |
Viitanen M, Sundstrom E, Baumann M, Poyhonen M, Tikka S, Behbahani H (2013) Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells. Exp Cell Res 319:134–143
CrossRef
Google scholar
|
[108] |
Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161–164
CrossRef
Google scholar
|
[109] |
Viola J, Soehnlein O (2015) Atherosclerosis—a matter of unresolved inflammation. Semin Immunol 27:184–193
CrossRef
Google scholar
|
[110] |
Wang L, Yi F, Fu L, Yang J, Wang S, Wang Z, Suzuki K, Sun L, Xu X, Yu Y
CrossRef
Google scholar
|
[111] |
Wang MM (2018) Cadasil. Handb Clin Neurol 148:733–743
CrossRef
Google scholar
|
[112] |
Wang P, Liu Z, Zhang X, Li J, Sun L, Ju Z, Li J, Chan P, Liu G-H, Zhang W
CrossRef
Google scholar
|
[113] |
Wang S, Hu B, Ding Z, Dang Y, Wu J, Li D, Liu X, Xiao B, Zhang W, Ren R
CrossRef
Google scholar
|
[114] |
Wang Z, Yuan Y, Zhang W, Lv H, Hong D, Chen B, Liu Y, Luan X, Xie S, Wu S (2011) NOTCH3 mutations and clinical features in 33 mainland Chinese families with CADASIL. J Neurol Neurosurg Psychiatry 82:534–539
CrossRef
Google scholar
|
[115] |
Wu JR, Yeh JL, Liou SF, Dai ZK, Wu BN, Hsu JH (2016) Gammasecretase inhibitor prevents proliferation and migration of ductus arteriosus smooth muscle cells through the Notch3-HES1/2/5 pathway. Int J Biol Sci 12:1063–1073
CrossRef
Google scholar
|
[116] |
Wu Z, Zhang W, Song M, Wang W, Wei G, Li W, Lei J, Huang Y, Sang Y, Chan P
CrossRef
Google scholar
|
[117] |
Xu CY, Qin MB, TanL SQ, Liu JA, Huang (2016) NIBP impacts on the expression of E-cadherin, CD44 and vimentin in colon cancer via the NF-kappaB pathway. Mol Med Rep 13:5379–5385
CrossRef
Google scholar
|
[118] |
Yamin R, Morgan KG (2012) Decipheringactin cytoskeletal function in the contractile vascular smooth muscle cell. J Physiol 590:4145–4154
CrossRef
Google scholar
|
[119] |
Yang J, Li J, Suzuki K, Liu X, Wu J, Zhang W, Ren R, Zhang W, Chan P, Izpisua Belmonte JC
CrossRef
Google scholar
|
[120] |
Ye L, Chang YH, Xiong Q, Zhang P, Zhang L, Somasundaram P, Lepley M, Swingen C, Su L, Wendel JS
CrossRef
Google scholar
|
[121] |
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A
CrossRef
Google scholar
|
[122] |
Zhang W, Song M, Qu J, Liu GH (2018a) Epigenetic modifications in cardiovascular aging and diseases. Circ Res 123:773–786
CrossRef
Google scholar
|
[123] |
Zhang X, Lee SJ, Young MF, Wang MM (2015b) The small leucinerich proteoglycan BGN accumulates in CADASIL and binds to NOTCH3. Transl Stroke Res 6:148–155
CrossRef
Google scholar
|
[124] |
Zhang Y, Zhou S, Deng F, Chen X, Wang X, Wang Y, Zhang H, Dai W, He B, Zhang Q
CrossRef
Google scholar
|
/
〈 | 〉 |