αKLOTHO and sTGFβR2 treatment counteract the osteoarthritic phenotype developed in a rat model

Paloma Martinez-Redondo, Isabel Guillen-Guillen, Noah Davidsohn, Chao Wang, Javier Prieto, Masakazu Kurita, Fumiyuki Hatanaka, Cuiqing Zhong, Reyna Hernandez-Benitez, Tomoaki Hishida, Takashi Lezaki, Akihisa Sakamoto, Amy N. Nemeth, Yuriko Hishida, Concepcion Rodriguez Esteban, Kensaku Shojima, Ling Huang, Maxim Shokhirev, Estrella Nuñez-Delicado, Josep M. Campistol, Isabel Guillen-Vicente, Elena Rodriguez-Iñigo, Juan Manuel Lopez-Alcorocho, Marta Guillen-Vicente, George Church, Pradeep Reddy, Pedro Guillen-Garcia, Guang-Hui Liu, Juan Carlos Izpisua Belmonte

PDF(1285 KB)
PDF(1285 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (3) : 219-226. DOI: 10.1007/s13238-019-00685-7
LETTER
LETTER

αKLOTHO and sTGFβR2 treatment counteract the osteoarthritic phenotype developed in a rat model

Author information +
History +

Cite this article

Download citation ▾
Paloma Martinez-Redondo, Isabel Guillen-Guillen, Noah Davidsohn, Chao Wang, Javier Prieto, Masakazu Kurita, Fumiyuki Hatanaka, Cuiqing Zhong, Reyna Hernandez-Benitez, Tomoaki Hishida, Takashi Lezaki, Akihisa Sakamoto, Amy N. Nemeth, Yuriko Hishida, Concepcion Rodriguez Esteban, Kensaku Shojima, Ling Huang, Maxim Shokhirev, Estrella Nuñez-Delicado, Josep M. Campistol, Isabel Guillen-Vicente, Elena Rodriguez-Iñigo, Juan Manuel Lopez-Alcorocho, Marta Guillen-Vicente, George Church, Pradeep Reddy, Pedro Guillen-Garcia, Guang-Hui Liu, Juan Carlos Izpisua Belmonte. αKLOTHO and sTGFβR2 treatment counteract the osteoarthritic phenotype developed in a rat model. Protein Cell, 2020, 11(3): 219‒226 https://doi.org/10.1007/s13238-019-00685-7

References

[1]
Appleton CTG, Pitelka V, Henry J, Beier F (2007) Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 56:1854–1868
CrossRef Google scholar
[2]
Bakker AC, van de Loo FA, van Beuningen HM, Sime P, van Lent PL, van der Kraan PM, Richards CD, van den Berg WB (2001) Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthr Cartil 9(2):128–136
CrossRef Google scholar
[3]
Chuchana P, Mausset-Bonnefont A-L, Mathieu M, Espinoza F, Teigell M, Toupet K, Ripoll C, Djouad F, Noel D, Jorgensen C (2018) Secreted α-Klotho maintains cartilage tissue homeostasis by repressing NOS2 and ZIP8-MMP13 catabolic axis. Aging (Albany NY) 10(6):1442–1453
CrossRef Google scholar
[4]
De Crescenzo G, Pham PL, Durocher Y, O’Connor-McCourt MD (2003) Transforming growth factor-beta (TGF-β) binding to the extracellular domain of the type II TGF-β receptor: receptor capture on a biosensor surface using a new coiled-coil capture system demonstrates that avidity contributes significantly to high affinity binding. Journal of Molecular Biology 328:1173–1183
CrossRef Google scholar
[5]
Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, Kay MA (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82(12):5887–5911
CrossRef Google scholar
[6]
Hu M-C, Moe OW (2012) Klotho as a potential biomarker and therapy for acute kidney injury. Nat Rev Nephrol 8:423–429
CrossRef Google scholar
[7]
Kyostio-Moore S, Bangari DS, Ewing P, Nambiar B, Berthelette P, Sookdeo C, Hutto E, Moran N, Sullivan J, Matthews GL (2013) Local gene delivery of heme oxygenase-1 by adenoassociated virus into osteoarthritic mouse joints exhibiting synovial oxidative stress. Osteoarthr Cartil 21(2):358–367
CrossRef Google scholar
[8]
Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420
CrossRef Google scholar
[9]
Ma B, Leijten JC, Wu L, Kip M, van Blitterswijk CA, Post JN, Karperien M (2013) Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr Cartil 21(4):599–603
CrossRef Google scholar
[10]
Pásztói M, Nagy G, Géher P, Lakatos T, Tóth K, Wellinger K, Pócza P, György B, Holub MC, Kittel A (2009) Gene expression and activity of cartilage degrading glycosidases in human rheumatoid arthritis and osteoarthritis synovial fibroblasts. Arthritis Res Therap 11(3):R68
CrossRef Google scholar
[11]
Sacitharan PK (2019) Ageing and osteoarthritis. In: Harris JR, Korolchuk VI (eds) Biochemistry and cell biology of ageing: part II clinical science. Springer, Singapore, pp 123–159
CrossRef Google scholar
[12]
Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB (2002) Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169(1):507–514
CrossRef Google scholar
[13]
Varela-Eirin M, Loureiro J, Fonseca E, Corrochano S, Caeiro JR, Collado M, Mayan MD (2018) Cartilage regeneration and ageing: targeting cellular plasticity in osteoarthritis. Ageing Res Rev 42:56–71
CrossRef Google scholar
[14]
Vivien CJ, Hudson JE, Porrello ER (2016) Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 1:16012
CrossRef Google scholar
[15]
Zhang W, Ouyang H, Dass CR, Xu J (2016) Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 4:15040
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s) 2020
AI Summary AI Mindmap
PDF(1285 KB)

Accesses

Citations

Detail

Sections
Recommended

/