Lifting the veil on the keratinocyte contribution to cutaneous nociception

Matthieu Talagas, Nicolas Lebonvallet, François Berthod, Laurent Misery

PDF(1115 KB)
PDF(1115 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (4) : 239-250. DOI: 10.1007/s13238-019-00683-9
REVIEW
REVIEW

Lifting the veil on the keratinocyte contribution to cutaneous nociception

Author information +
History +

Abstract

Cutaneous nociception is essential to prevent individuals from sustaining injuries. According to the conventional point of view, the responses to noxious stimuli are thought to be exclusively initiated by sensory neurons, whose activity would be at most modulated by keratinocytes. However recent studies have demonstrated that epidermal keratinocytes can also act as primary nociceptive transducers as a supplement to sensory neurons. To enlighten our understanding of cutaneous nociception, this review highlights recent and relevant findings on the cellular and molecular elements that underlie the contribution of epidermal keratinocytes as nociceptive modulators and noxious sensors, both under healthy and pathological conditions.

Keywords

keratinocyte / nociception / skin / TRP / pain / inflammation

Cite this article

Download citation ▾
Matthieu Talagas, Nicolas Lebonvallet, François Berthod, Laurent Misery. Lifting the veil on the keratinocyte contribution to cutaneous nociception. Protein Cell, 2020, 11(4): 239‒250 https://doi.org/10.1007/s13238-019-00683-9

References

[1]
Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79:618–639
CrossRef Google scholar
[2]
Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452
CrossRef Google scholar
[3]
Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494
CrossRef Google scholar
[4]
Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Investig Dermatol 129:2312–2315
CrossRef Google scholar
[5]
Bae S, Matsunaga Y, Tanaka Y, Katayama I (1999) Autocrine induction of substance P mRNA and peptide in cultured normal human keratinocytes. Biochem Biophys Res Commun 263:327–333
CrossRef Google scholar
[6]
Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857
CrossRef Google scholar
[7]
Bang S, Yoo S, Yang T-J, Cho H, Hwang SW (2010) Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem 285:19362–19371
CrossRef Google scholar
[8]
Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL (2013) Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS ONE 8:e56744
CrossRef Google scholar
[9]
Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284
CrossRef Google scholar
[10]
Baumbauer KM, DeBerry JJ, Adelman PC, Miller RH, Hachisuka J, Lee KH, Ross SE, Koerber HR, Davis BM, Albers KM (2015) Keratinocytes can modulate and directly initiate nociceptive responses. ELife. https://doi.org/10.7554/eLife.09674.001
CrossRef Google scholar
[11]
Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282
CrossRef Google scholar
[12]
Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt S-E, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208
CrossRef Google scholar
[13]
Bidaux G, Borowiec A, Gordienko D, Beck B, Shapovalov GG, Lemonnier L, Flourakis M, Vandenberghe M, Slomianny C, Dewailly E (2015) Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold-dependent manner. Proc Natl Acad Sci USA 112:E3345–3354
CrossRef Google scholar
[14]
Boulais N, Misery L (2008) The epidermis: a sensory tissue. Eur J Dermatol EJD 18:119–127
[15]
Bouvier V, Roudaut Y, Osorio N, Aimonetti J-M, Ribot-Ciscar E, Penalba V, Merrot T,Lebonvallet N, Le Gall-Ianotto C, Misery L (2018) Merkel cells sense cooling with TRPM8 channels. J Investig Dermatol 138:946–956
CrossRef Google scholar
[16]
del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D’Amours M, Deering N (2010) TRPA1 contributes to cold hypersensitivity. J Neurosci 30:15165–15174
CrossRef Google scholar
[17]
Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517
CrossRef Google scholar
[18]
Caterina MJ, Pang Z (2016) TRP channels in skin biology and pathophysiology. Pharmaceuticals (Basel Switz) 9:77
CrossRef Google scholar
[19]
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824
CrossRef Google scholar
[20]
Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441
CrossRef Google scholar
[21]
Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313
CrossRef Google scholar
[22]
Cauna N (1973) The free penicillate nerve endings of the human hairy skin. J Anat 115:277–288
[23]
Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962
CrossRef Google scholar
[24]
Chung M-K, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575
CrossRef Google scholar
[25]
Colburn RW, Lubin ML, Stone DJ, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386
CrossRef Google scholar
[26]
Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47
CrossRef Google scholar
[27]
Davis KD, Pope GE (2002) Noxious cold evokes multiple sensations with distinct time courses. Pain 98:179–185
CrossRef Google scholar
[28]
Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187
CrossRef Google scholar
[29]
Denda M, Fuziwara S, Inoue K, Denda S, Akamatsu H, Tomitaka A, Matsunaga K (2001) Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 285:1250–1252
CrossRef Google scholar
[30]
Denda M, Tsutsumi M, Denda S (2010a) Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol 19:791–795
CrossRef Google scholar
[31]
Denda M, Tsutsumi M, Goto M, Ikeyama K, Denda S(2010b) Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Investig Dermatol 130:1942–1945
CrossRef Google scholar
[32]
Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378
CrossRef Google scholar
[33]
Di Marco E, Marchisio PC, Bondanza S, Franzi AT, Cancedda R, De Luca M (1991) Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes. J Biol Chem 266:21718–21722
[34]
Djouhri L, Lawson SN (2004) Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Rev 46:131–145
CrossRef Google scholar
[35]
Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632
CrossRef Google scholar
[36]
Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499
CrossRef Google scholar
[37]
Fischer M, Glanz D, Urbatzka M, Brzoska T, Abels C (2009) Keratinocytes: a source of the transmitter L-glutamate in the epidermis. Exp Dermatol 18:1064–1066
CrossRef Google scholar
[38]
Grando SA, Kist DA, Qi M, Dahl MV (1993) Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Investig Dermatol 101:32–36
CrossRef Google scholar
[39]
Greig AVH, Linge C, Terenghi G, McGrouther DA, Burnstock G (2003) Purinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes. J Investig Dermatol 120:1007–1015
CrossRef Google scholar
[40]
Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414
CrossRef Google scholar
[41]
Haeberle H, Fujiwara M, Chuang J, Medina MM, Panditrao MV, Bechstedt S, Howard J, Lumpkin EA (2004) Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci USA 101:14503–14508
CrossRef Google scholar
[42]
Han SB, Kim H, Cho SH, Lee JD, Chung JH, Kim HS (2016) Transient receptor potential vanilloid-1 in epidermal keratinocytes may contribute to acute pain in herpes zoster. Acta Dermato Venereol 96:319–322
CrossRef Google scholar
[43]
Hilliges M, Wang L, Johansson O (1995) Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. J Investig Dermatol 104:134–137
CrossRef Google scholar
[44]
Hou Q, Barr T, Gee L, Vickers J, Wymer J, Borsani E, Rodella L, Getsios S,Burdo T, Eisenberg E (2011) Keratinocyte expression of calcitonin gene-related peptide β: implications for neuropathic and inflammatory pain mechanisms. Pain 152:2036–2051
CrossRef Google scholar
[45]
Huang SM, Lee H, Chung M-K, Park U, Yu YY, Bradshaw HB, Coulombe PA, Walker JM, Caterina MJ (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737
CrossRef Google scholar
[46]
Huang SM, Li X, Yu Y, Wang J, Caterina MJ (2011) TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 7:37
CrossRef Google scholar
[47]
Ikeda R, Cha M, Ling J,Jia Z, Coyle D, Gu JG (2014) Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157:664–675
CrossRef Google scholar
[48]
Inoue K, Koizumi S, Fuziwara S, Denda S, Inoue K, Denda M (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291:124–129
CrossRef Google scholar
[49]
Ji R-R, Chamessian A, Zhang Y-Q (2016) Pain regulation by nonneuronal cells and inflammation. Science 354:572–577
CrossRef Google scholar
[50]
Jordt S-E, Bautista DM, Chuang H-H, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265
CrossRef Google scholar
[51]
Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA 106:1273–1278
CrossRef Google scholar
[52]
Kennedy WR, Wendelschafer-Crabb G (1993) The innervation of human epidermis. J Neurol Sci 115:184–190
CrossRef Google scholar
[53]
Khodorova A, Fareed MU, Gokin A, Strichartz GR, Davar G (2002) Local injection of a selective endothelin-B receptor agonist inhibits endothelin-1-induced pain-like behavior and excitation of nociceptors in a naloxone-sensitive manner. J Neurosci 22:7788–7796
CrossRef Google scholar
[54]
Khodorova A, Navarro B, Jouaville LS, Murphy J-E, Rice FL, Mazurkiewicz JE, Long-Woodward D, Stoffel M, Strichartz GR, Yukhananov R (2003) Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med 9:1055–1061
CrossRef Google scholar
[55]
Koizumi S, Fujishita K, Inoue K, Shigemoto-Mogami Y, Tsuda M, Inoue K (2004) Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 380:329–338
CrossRef Google scholar
[56]
Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang D-S, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289
CrossRef Google scholar
[57]
Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29:4808–4819
CrossRef Google scholar
[58]
Lee H, Iida T, Mizuno A, Suzuki M, Caterina MJ (2005) Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 25:1304–1310
CrossRef Google scholar
[59]
LeMasurier M, Gillespie PG (2005) Hair-cell mechanotransduction and cochlear amplification. Neuron 48:403–415
CrossRef Google scholar
[60]
Li W-W, Sabsovich I, Guo T-Z, Zhao R, Kingery WS, Clark JD (2009) The role of enhanced cutaneous IL-1beta signaling in a rat tibia fracture model of complex regional pain syndrome. Pain 144:303–313
CrossRef Google scholar
[61]
Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865
CrossRef Google scholar
[62]
Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol CB 15:929–934
CrossRef Google scholar
[63]
Maksimovic S, Baba Y, Lumpkin EA (2013) Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentletouch receptor. Ann N Y Acad Sci 1279:13–21
CrossRef Google scholar
[64]
Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, Firozi P, Woo S-H, Ranade S, Patapoutian A (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–621
CrossRef Google scholar
[65]
McArthur JC, Stocks EA, Hauer P, Cornblath DR, Griffin JW (1998) Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol 55:1513–1520
CrossRef Google scholar
[66]
McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58
CrossRef Google scholar
[67]
McMahon SB, Bennett DLH, Bevan S (2008) Inflammatory mediators and modulators of pain. In: McMahon SB, Koltzenburg M(eds) Wall and and Melzack’s textbook of pain. Elsevier, Philadelphia, pp 49–72
CrossRef Google scholar
[68]
Moehring F, Cowie AM, Menzel AD, Weyer AD, Grzybowski M, Arzua T, Geurts AM, Palygin O, Stucky CL (2018a) Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. ELife 7:e31684
CrossRef Google scholar
[69]
Moehring F, Halder P, Seal RP, Stucky CL (2018b) Uncovering the cells and circuits of touch in normal and pathological settings. Neuron 100:349–360
CrossRef Google scholar
[70]
Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, Parekh P, Lee SH, Kontchou N-A, Yeh I (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci USA 110:E3225–E3234
CrossRef Google scholar
[71]
Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KSR, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472
CrossRef Google scholar
[72]
Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3
CrossRef Google scholar
[73]
Morrison KM, Miesegaes GR, Lumpkin EA, Maricich SM (2009) Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol 336:76–83
CrossRef Google scholar
[74]
Nahm WK, Philpot BD, Adams MM, Badiavas EV, Zhou LH, Butmarc J, Bear MF, Falanga V (2004) Significance of N-methyl-Daspartate (NMDA) receptor-mediated signaling in human keratinocytes. J Cell Physiol 200:309–317
CrossRef Google scholar
[75]
Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Investig 115:2393–2401
CrossRef Google scholar
[76]
Oberwinkler J, Philipp SE (2014) TRPM3. In: Nilius B, Flockerzi V(eds) Mammalian transient receptor potential (TRP) cation channels. Springer, Berlin, pp 427–459
CrossRef Google scholar
[77]
Pang Z, Sakamoto T, Tiwari V, Kim Y-S, Yang F, Dong X, Güler AD, Guan Y, Caterina MJ (2015) Selective keratinocyte stimulation is sufficient to evoke nociception in mice. Pain 156:656–665
CrossRef Google scholar
[78]
Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ (2011) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 31:11425–11436
CrossRef Google scholar
[79]
Pei Y, Barber LA, Murphy RC, Johnson CA, Kelley SW, Dy LC, Fertel RH, Nguyen TM, Williams DA, Travers JB (1998) Activation of the epidermal platelet-activating factor receptor results in cytokine and cyclooxygenase-2 biosynthesis. J Immunol (Baltim Md) 1950 (161):1954–1961
[80]
Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S (2002a) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715
CrossRef Google scholar
[81]
Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P (2002b) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049
CrossRef Google scholar
[82]
Pogorzala LA, Mishra SK, Hoon MA (2013) The cellular code for mammalian thermosensation. J Neurosci 33:5533–5541
CrossRef Google scholar
[83]
Radtke C, Vogt PM, Devor M, Kocsis JD (2010) Keratinocytes acting on injured afferents induce extreme neuronal hyperexcitability and chronic pain. Pain 148:94–102
CrossRef Google scholar
[84]
Roggenkamp D, Falkner S, Stäb F, Petersen M, Schmelz M, Neufang G (2012) Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells. J Investig Dermatol 132:1892–1900
CrossRef Google scholar
[85]
Sekino Y, Nakano J, Hamaue Y, Chuganji S, Sakamoto J, Yoshimura T, Origuchi T, Okita M (2014) Sensory hyperinnervation and increase in NGF, TRPV1 and P2X3 expression in the epidermis following cast immobilization in rats. Eur J Pain (Lond Engl) 18:639–648
CrossRef Google scholar
[86]
Shi X, Wang L, Li X, Sahbaie P, Kingery WS, Clark JD (2011) Neuropeptides contribute to peripheral nociceptive sensitization by regulating interleukin-1β production in keratinocytes. Anesth Analg 113:175–183
CrossRef Google scholar
[87]
Shi X, Wang L, Clark JD, Kingery WS (2013) Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways. Regul Pept 186:92–103
CrossRef Google scholar
[88]
Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin J-P, Ooi L (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190
CrossRef Google scholar
[89]
Snider WD, McMahon SB (1998) Tackling pain at the source: new ideas about nociceptors. Neuron 20:629–632
CrossRef Google scholar
[90]
Sondersorg AC, Busse D, Kyereme J, Rothermel M, Neufang G, Gisselmann G, Hatt H, Conrad H (2014) Chemosensory information processing between keratinocytes and trigeminal neurons. J Biol Chem 289:17529–17540
CrossRef Google scholar
[91]
Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, Travers JB (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222
CrossRef Google scholar
[92]
Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829
CrossRef Google scholar
[93]
Suzuki M, Watanabe Y, Oyama Y, Mizuno A, Kusano E, Hirao A, Ookawara S (2003) Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci Lett 353:189–192
CrossRef Google scholar
[94]
Talagas M, Lebonvallet N, Misery L (2018a) Intraepidermal nerve fibres are not the exclusive tranducers of nociception. J Neurosci Methods 306:92–93
CrossRef Google scholar
[95]
Talagas M, Lebonvallet N, Leschiera R, Marcorelles P, Misery L (2018b) What about physical contacts between epidermal keratinocytes and sensory neurons? Exp Dermatol 27:9–13
CrossRef Google scholar
[96]
Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279:35133–35138
CrossRef Google scholar
[97]
Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543
CrossRef Google scholar
[98]
Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956
CrossRef Google scholar
[99]
Tsuboi R, Sato C, Oshita Y, Hama H, Sakurai T, Goto K, Ogawa H (1995) Ultraviolet B irradiation increases endothelin-1 and endothelin receptor expression in cultured human keratinocytes. FEBS Lett 371:188–190
CrossRef Google scholar
[100]
Tsutsumi M, Inoue K, Denda S, Ikeyama K, Goto M, Denda M (2009) Mechanical-stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes. Cell Tissue Res 338:99–106
CrossRef Google scholar
[101]
Tsutsumi M, Denda S, Ikeyama K, Goto M, Denda M (2010) Exposure to low temperature induces elevation of intracellular calcium in cultured human keratinocytes. J Investig Dermatol 130:1945–1948
CrossRef Google scholar
[102]
Van Keymeulen A, Mascre G, Youseff KK, Harel I, Michaux C, De Geest N, Szpalski C, Achouri Y, Bloch W, Hassan BA (2009) Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol 187:91–100
CrossRef Google scholar
[103]
Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, Segal A, Voet T, Vennekens R, Zimmermann K (2018) A TRP channel trio mediates acute noxious heat sensing. Nature 555:662–666
CrossRef Google scholar
[104]
Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–494
CrossRef Google scholar
[105]
Wang L, Hilliges M, Jernberg T, Wiegleb-Edström D, Johansson O (1990) Protein gene product 9.5-immunoreactive nerve fibres and cells in human skin. Cell Tissue Res 261:25–33
CrossRef Google scholar
[106]
Waxman SG, Cummins TR, Dib-Hajj SD, Black JA (2000) Voltagegated sodium channels and the molecular pathogenesis of pain: a review. J Rehabil Res Dev 37:517–528
[107]
Wintzen M, Yaar M, Burbach JP, Gilchrest BA (1996) Proopiomelanocortin gene product regulation in keratinocytes. J Investig Dermatol 106:673–678
CrossRef Google scholar
[108]
Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24:6410–6415
CrossRef Google scholar
[109]
Woolf CJ, Ma Q (2007) Nociceptors–noxious stimulus detectors. Neuron 55:353–364
CrossRef Google scholar
[110]
Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186
CrossRef Google scholar
[111]
Zanello SB, Jackson DM, Holick MF (1999) An immunocytochemical approach to the study of beta-endorphin production in human keratinocytes using confocal microscopy. Ann N Y Acad Sci 885:85–99
CrossRef Google scholar
[112]
Zhao P, Barr TP, Hou Q, Dib-Hajj SD, Black JA, Albrecht PJ, Petersen K, Eisenberg E, Wymer JP, Rice FL (2008) Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: evidence for a role in pain. Pain 139:90–105
CrossRef Google scholar
[113]
Zimmermann K, Leffler A, Fischer MMJ, Messlinger K, Nau C, Reeh PW (2005) The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience 135:1277–1284
CrossRef Google scholar
[114]
Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s)
AI Summary AI Mindmap
PDF(1115 KB)

Accesses

Citations

Detail

Sections
Recommended

/