Research journey of respirasome
Meng Wu, Jinke Gu, Shuai Zong, Runyu Guo, Tianya Liu, Maojun Yang
Research journey of respirasome
Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists ‘see’ the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.
electron transport chain / supercomplex organization / cellular respiration / structure of respirasome / cryo-EM / megacomplex
[1] |
Acin-Perez R,Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, Bruno C,Moraes CT, Enriquez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815
CrossRef
Google scholar
|
[2] |
Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539
CrossRef
Google scholar
|
[3] |
Adiga PS, Malladi R, Baxter W, Glaeser RM (2004) A binary segmentation approach for boxing ribosome particles in cryo EM micrographs. J Struct Biol 145:142–151
CrossRef
Google scholar
|
[4] |
Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36
CrossRef
Google scholar
|
[5] |
Agip A-NA, Blaza JN, Bridges HR, Viscomi C, Rawson S, Muench SP, Hirst J (2018) Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat Struct Mol Biol 25:548–556
CrossRef
Google scholar
|
[6] |
Agip AA, Blaza JN, Fedor JG, Hirst J(2019) Mammalian respiratory complex I through the lens of cryo-EM. Annu Rev Biophys 48:165–184
CrossRef
Google scholar
|
[7] |
Al-Azzawi A, Ouadou A, Tanner JJ, Cheng J (2019a) AutoCryo-Picker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images. BMC Bioinform 20:326
CrossRef
Google scholar
|
[8] |
Al-Azzawi A, Ouadou A, Tanner JJ, Cheng J (2019b) A superclustering approach for fully automated single particle picking in Cryo-EM. Genes (Basel). https://doi.org/10.3390/genes10090666
CrossRef
Google scholar
|
[9] |
Alcázar-Fabra M, Navas P, Brea-Calvo G (2016) Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochim Biophys Acta (BBA) 1857:1073–1078
CrossRef
Google scholar
|
[10] |
Allen RD, Schroeder CC, Fok AK (1989) An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J Cell Biol 108:2233–2240
CrossRef
Google scholar
|
[11] |
Althoff T, Mills DJ, Popot JL, Kuhlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664
CrossRef
Google scholar
|
[12] |
Bai XC, Fernandez IS, McMullan G, Scheres SH (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. Elife 2:e00461
CrossRef
Google scholar
|
[13] |
Bai XC, McMullan G, Scheres SH (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57
CrossRef
Google scholar
|
[14] |
Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landazuri MO, Enriquez JA (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16:378–386
CrossRef
Google scholar
|
[15] |
Barquera B (2014) The sodium pumping NADH:quinone oxidoreductase (Na(+)-NQR), a unique redox-driven ion pump. J Bioenerg Biomembr 46:289–298
CrossRef
Google scholar
|
[16] |
Bates MGD, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW (2012) Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 33:3023–3033
CrossRef
Google scholar
|
[17] |
Bentinger M, Tekle M, Dallner G (2010) Coenzyme Q—biosynthesis and functions. Biochem Biophys Res Commun 396:74–79
CrossRef
Google scholar
|
[18] |
Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J (2017) Mitochondrial complex II: at the crossroads. Trends Biochem Sci 42:312–325
CrossRef
Google scholar
|
[19] |
Biagini GA, Fisher N, Shone AE, Mubaraki MA, Srivastava A, Hill A, Antoine T, Warman AJ, Davies J, Pidathala C
CrossRef
Google scholar
|
[20] |
Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569
CrossRef
Google scholar
|
[21] |
Blair PV (1967) Preparation and properties of repeating units of mitochondrial electron transfer. Methods Enzymol 10:208–212
CrossRef
Google scholar
|
[22] |
Blaza JN, Serreli R, Jones AJ, Mohammed K, Hirst J (2014) Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci USA 111:15735–15740
CrossRef
Google scholar
|
[23] |
Blaza JN, Vinothkumar KR, Hirst J (2018) Structure of the deactive state of mammalian respiratory complex I. Structure 26:312–319. e313
CrossRef
Google scholar
|
[24] |
Bottani E, Cerutti R, Harbour ME, Ravaglia S, Dogan SA, Giordano C, Fearnley IM, D’Amati G, Viscomi C, Fernandez-Vizarra E
CrossRef
Google scholar
|
[25] |
Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92
CrossRef
Google scholar
|
[26] |
Brandt U (2011) A two-state stabilization-change mechanism for proton-pumping complex I. Biochim Biophys Acta 1807:1364–1369
CrossRef
Google scholar
|
[27] |
Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637
CrossRef
Google scholar
|
[28] |
Brzezinski P, Adelroth P (1998) Pathways of proton transfer in cytochrome c oxidase. J Bioenerg Biomembr 30:99–107
CrossRef
Google scholar
|
[29] |
Bultema JB, Braun HP, Boekema EJ, Kouril R (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787:60–67
CrossRef
Google scholar
|
[30] |
Cecchini G (2003) Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77–109
CrossRef
Google scholar
|
[31] |
Chance B, Estabrook RW, Lee CP (1963) Electron transport in the oxysome. Science 140:379–380
CrossRef
Google scholar
|
[32] |
Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176:250
CrossRef
Google scholar
|
[33] |
Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457
CrossRef
Google scholar
|
[34] |
Cogliati S, Calvo E, Loureiro M, Guaras AM, Nieto-Arellano R, Garcia-Poyatos C, Ezkurdia I, Mercader N, Vazquez J, Enriquez JA (2016) Mechanism of super-assembly of respiratory complexes III and IV. Nature 539:579–582
CrossRef
Google scholar
|
[35] |
Crane FL, Hatefi Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25:220–221
CrossRef
Google scholar
|
[36] |
Crofts AR, Meinhardt SW, Jones KR, Snozzi M (1983) The role of the quinone pool in the cyclic electron-transfer chain of rhodopseudomonas sphaeroides: a modified Q-cycle mechanism. Biochim Biophys Acta 723:202–218
CrossRef
Google scholar
|
[37] |
Davies KM, Blum TB, Kuhlbrandt W (2018) Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. Proc Natl Acad Sci USA 115:3024–3029
CrossRef
Google scholar
|
[38] |
Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kuhlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci USA 108:14121–14126
CrossRef
Google scholar
|
[39] |
De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134
CrossRef
Google scholar
|
[40] |
Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228
CrossRef
Google scholar
|
[41] |
Dubochet J, Booy FP, Freeman R, Jones AV, Walter CA (1981) Low temperature electron microscopy. Annu Rev Biophys Bioeng 10:133–149
CrossRef
Google scholar
|
[42] |
Duchen MR, Szabadkai G (2010) Roles of mitochondria in human disease. Essays Biochem 47:115–137
CrossRef
Google scholar
|
[43] |
Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ(2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci USA 108:15196–15200
CrossRef
Google scholar
|
[44] |
Efremov RG, Sazanov LA (2012) The coupling mechanism of respiratory complex I- a structural and evolutionary perspective . Biochim Biophys Acta 1817:1785– 1795
CrossRef
Google scholar
|
[45] |
Enríquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78:533–561
CrossRef
Google scholar
|
[46] |
Eubel H,Heinemeyer J,Sunderhaus S, Braun HP (2004) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42:937–942
CrossRef
Google scholar
|
[47] |
Evans DR, Guy HI (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279:33035–33038
CrossRef
Google scholar
|
[48] |
Fan X, Wang J, Zhang X, Yang Z, Zhang JC, Zhao L, Peng HL, Lei J, Wang HW (2019) Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Nat Commun 10:2386
CrossRef
Google scholar
|
[49] |
Fedor JG, Hirst J (2018) Mitochondrial supercomplexes do not enhance catalysis by quinone channeling. Cell Metab 28:525–531.e524
CrossRef
Google scholar
|
[50] |
Feng X, Fu Z,Kaledhonkar S, Jia Y, Shah B, Jin A, Liu Z, Sun M, Chen B, Grassucci RA
CrossRef
Google scholar
|
[51] |
Feng Y, Li WF, Li J,Wang JW, Ge JP, Xu D, Liu YJ, Wu KQ, Zeng QY, Wu JW
CrossRef
Google scholar
|
[52] |
Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature 538:406
CrossRef
Google scholar
|
[53] |
Frank J (2017a) Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat Protoc 12:209–212
CrossRef
Google scholar
|
[54] |
Frank J (2017b) Time-resolved cryo-electron microscopy: Recent progress. J Struct Biol 200:303–306
CrossRef
Google scholar
|
[55] |
Frank J,Shimkin B, Dowse H (1981) Spider—a modular software system for electron image processing. Ultramicroscopy 6:343–357
CrossRef
Google scholar
|
[56] |
Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA (2010) Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 45:563–572
CrossRef
Google scholar
|
[57] |
Friedrich T (2014) On the mechanism of respiratory complex I. J Bioenerg Biomembr 46:255–268
CrossRef
Google scholar
|
[58] |
Fu Z, Kaledhonkar S, Borg A, Sun M, Chen B, Grassucci RA, Ehrenberg M, Frank J (2016) Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure 24:2092–2101
CrossRef
Google scholar
|
[59] |
Genova ML, Lenaz G (2011) New developments on the functions of coenzyme Q in mitochondria. BioFactors 37:330–354
CrossRef
Google scholar
|
[60] |
Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443
CrossRef
Google scholar
|
[61] |
Gomez LA, Monette JS, Chavez JD, Maier CS, Hagen TM (2009) Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 490:30–35
CrossRef
Google scholar
|
[62] |
Gong H, Li J, Xu A, Tang Y, Ji W, Gao R, Wang S, Yu L, Tian C, Li J
CrossRef
Google scholar
|
[63] |
Green DE, Tzagoloff A (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys 116:293–304
CrossRef
Google scholar
|
[64] |
Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Wang X,Conde Alonso S, Ofori E, Auwerx J
CrossRef
Google scholar
|
[65] |
Grigorieff N (1998) Three-dimensional structure of bovine NADH: ubiquinone oxidoreductase (complex I) at 22 A in ice. J Mol Biol 277:1033–1046
CrossRef
Google scholar
|
[66] |
Gu J, Wu M,Guo R,Yan K, Lei J, Gao N, Yang M (2016) The architecture of the mammalian respirasome. Nature 537:639
CrossRef
Google scholar
|
[67] |
Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J,Wang P, Zhuo W, Yang M (2019) Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science 364:1068–1075
CrossRef
Google scholar
|
[68] |
Guo R, Gu J, Zong S, Wu M, Yang M (2018) Structure and mechanism of mitochondrial electron transport chain. Biomed J 41:9–20
CrossRef
Google scholar
|
[69] |
Guo R, Zong S, Wu M, Gu J, Yang M (2017) Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170:1247–1257.e1212
CrossRef
Google scholar
|
[70] |
Gupte SS, Hackenbrock CR (1988) The role of cytochrome c diffusion in mitochondrial electron transport. J Biol Chem 263:5248–5253
|
[71] |
Hackenbrock CR (1977) Molecular organization and the fluid nature of the mitochondrial energy transducing membrane. In: Abrahamsson S, Pascher I (eds) Structure of biological membranes. Springer, Boston, MA,pp 199–234
CrossRef
Google scholar
|
[72] |
Harding JW Jr, Pyeritz EA, Copeland ES, White HB 3rd (1975) Role of glycerol 3-phosphate dehydrogenase in glyceride metabolism. Effect of diet on enzyme activities in chicken liver. Biochemical Journal 146:223–229
CrossRef
Google scholar
|
[73] |
Hartley AM, Lukoyanova N, Zhang Y, Cabrera-Orefice A, Arnold S, Meunier B, Pinotsis N, Marechal A (2019) Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc1. Nat Struct Mol Biol 26:78–83
CrossRef
Google scholar
|
[74] |
Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069
CrossRef
Google scholar
|
[75] |
Hatefi Y, Haavik AG, Fowler LR, Griffiths DE (1962) Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem 237:2661–2669
|
[76] |
Hayward SB, Glaeser RM (1979) Radiation damage of purple membrane at low temperature. Ultramicroscopy 04:201–210
CrossRef
Google scholar
|
[77] |
Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929
CrossRef
Google scholar
|
[78] |
Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32
CrossRef
Google scholar
|
[79] |
Heron C, Ragan CI, Trumpower BL (1978) The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinolcytochrome c oxidoreductase. Restoration of ubiquinone-pool behaviour. Biochem J 174:791–800
CrossRef
Google scholar
|
[80] |
Hill R, Keilin D (1930) The porphyrin of component c of cytochrome and its relationship to other porphyrins. Proc R Soc Lond B Biol Sci 107:286–292
CrossRef
Google scholar
|
[81] |
Hirst J (2013) Mitochondrial complex I. Annu Rev Biochem 82:551–575
CrossRef
Google scholar
|
[82] |
Hirst J (2018) Open questions: respiratory chain supercomplexes—why are they there and what do they do? BMC Biol 16:111
CrossRef
Google scholar
|
[83] |
Hochli M, Hackenbrock CR (1976) Fluidity in mitochondrial membranes: thermotropic lateral translational motion of intramembrane particles. Proc Natl Acad Sci USA 73:1636–1640
CrossRef
Google scholar
|
[84] |
Hochli M, Hochli L, Hackenbrock CR (1985) Independent lateral diffusion of cytochrome bc1 complex and cytochrome oxidase in the mitochondrial inner membrane. Eur J Cell Biol 38:1–5
|
[85] |
Hofhaus G, Weiss H, Leonard K (1991) Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (complex I) . J Mol Biol 221:1027–1043
CrossRef
Google scholar
|
[86] |
Hofmann AD, Beyer M, Krause-Buchholz U, Wobus M, Bornhauser M, Rodel G (2012) OXPHOS supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCs. PLoS ONE 7:e35160
CrossRef
Google scholar
|
[87] |
Hu M, Yu H, Gu K, Wang Z, Ruan H,Wang K, Ren S, Li B, Gan L, Xu S
CrossRef
Google scholar
|
[88] |
Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451
CrossRef
Google scholar
|
[89] |
Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S (2013) A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4:2147
CrossRef
Google scholar
|
[90] |
Iverson TM, Luna-Chavez C,Cecchini G, Rees DC (1999) Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284:1961–1966
CrossRef
Google scholar
|
[91] |
Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71
CrossRef
Google scholar
|
[92] |
Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669
CrossRef
Google scholar
|
[93] |
Kadenbach B (2017) Regulation of mammalian 13-subunit cytochrome c oxidase and binding of other proteins: role of NDUFA4. Trends Endocrinol Metab 28:761–770
CrossRef
Google scholar
|
[94] |
Kalckar HM (1974) Origins of the concept oxidative phosphorylation. Mol Cell Biochem 5:55–62
CrossRef
Google scholar
|
[95] |
Kalckar HM (1991) 50 years of biological research—from oxidative phosphorylation to energy requiring transport regulation. Annu Rev Biochem 60:1–38
CrossRef
Google scholar
|
[96] |
Keilin D, Hartree EF (1947) Activity of the cytochrome system in heart muscle preparations. Biochem J 41:500–502
CrossRef
Google scholar
|
[97] |
Kerscher S, Drose S, Zickermann V, Brandt U (2008) The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 45:185–222
CrossRef
Google scholar
|
[98] |
Kerscher SJ (2000) Diversity and origin of alternative NADH: ubiquinone oxidoreductases. Biochim Biophys Acta 1459:274–283
CrossRef
Google scholar
|
[99] |
Konstantinov AA, Siletsky S, Mitchell D, Kaulen A, Gennis RB (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci USA 94:9085–9090
CrossRef
Google scholar
|
[100] |
Krause F (2006) Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 27:2759–2781
CrossRef
Google scholar
|
[101] |
Krause F, Reifschneider NH, Vocke D, Seelert H, Rexroth S, Dencher NA (2004a) “Respirasome”-like supercomplexes in green leaf mitochondria of spinach. J Biol Chem 279:48369–48375
CrossRef
Google scholar
|
[102] |
Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2004b) Supramolecular organization of cytochrome c oxidase- and alternative oxidasedependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem 279:26453–26461
CrossRef
Google scholar
|
[103] |
Kroger A, Klingenberg M (1973) The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem 34:358–368
CrossRef
Google scholar
|
[104] |
Kuijper M, van Hoften G, Janssen B, Geurink R,De Carlo S, Vos M, van Duinen G,van Haeringen B, Storms M (2015) FEI’s direct electron detector developments: embarking on a revolution in cryo-TEM. J Struct Biol 192:179–187
CrossRef
Google scholar
|
[105] |
Lamantea E, Carrara F,Mariotti C, Morandi L, Tiranti V, Zeviani M (2002) A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul Disord 12:49–52
CrossRef
Google scholar
|
[106] |
Langlois R, Pallesen J, Ash JT, Nam Ho D, Rubinstein JL, Frank J (2014) Automated particle picking for low-contrast macromolecules in cryo-electron microscopy. J Struct Biol 186:1–7
CrossRef
Google scholar
|
[107] |
Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C,Balsa E, Perales-Clemente E, Quiros PM, Calvo E, Rodriguez-Hernandez MA
CrossRef
Google scholar
|
[108] |
Lax NZ, Turnbull DM, Reeve AK (2011) Mitochondrial mutations: newly discovered players in neuronal degeneration. Neuroscientist 17:645–658
CrossRef
Google scholar
|
[109] |
Leigh KE, Navarro PP, Scaramuzza S, Chen W, Zhang Y, Castano-Diez D, Kudryashev M (2019) Subtomogram averaging from cryo-electron tomograms. Methods Cell Biol 152:217–259
CrossRef
Google scholar
|
[110] |
Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 292:C1221–1239
CrossRef
Google scholar
|
[111] |
Lenaz G, Genova ML (2012) Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation. Adv Exp Med Biol 748:107–144
CrossRef
Google scholar
|
[112] |
Lenaz G,Tioli G,Falasca AI, Genova ML (2016) Complex I function in mitochondrial supercomplexes. Biochim Biophys Acta 1857:991–1000
CrossRef
Google scholar
|
[113] |
Leonard K, Haiker H, Weiss H (1987) Three-dimensional structure of NADH: ubiquinone reductase (complex I) from Neurospora mitochondria determined by electron microscopy of membrane crystals. J Mol Biol 194:277–286
CrossRef
Google scholar
|
[114] |
Lepault J, Dubochet J, Baschong W, Kellenberger E (1987) Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO J 6:1507–1512
CrossRef
Google scholar
|
[115] |
Letts JA, Fiedorczuk K, Degliesposti G, Skehel M, Sazanov LA (2019) Structures of respiratory supercomplex I+III2 reveal functional and conformational crosstalk. Mol Cell 75:1131–1146
CrossRef
Google scholar
|
[116] |
Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648
CrossRef
Google scholar
|
[117] |
Letts JA, Sazanov LA (2017) Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 24:800–808
CrossRef
Google scholar
|
[118] |
Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590
CrossRef
Google scholar
|
[119] |
Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112
CrossRef
Google scholar
|
[120] |
Lim Y-A, Rhein V, Baysang G, Meier F, Poljak AJ, Raftery M, Guilhaus M, Ittner LM, Eckert A, Götz J (2010) Aβ and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics 10:1621–1633
CrossRef
Google scholar
|
[121] |
Lobo-Jarne T, Ugalde C (2018) Respiratory chain supercomplexes: structures, function and biogenesis. Semin Cell Dev Biol 76:179–190
CrossRef
Google scholar
|
[122] |
Luo F, Gui X, Zhou H, Gu J, Li Y, Liu X, Zhao M, Li D, Li X, Liu C (2018) Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat Struct Mol Biol 25:341–346
CrossRef
Google scholar
|
[123] |
Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19:1469–1480
CrossRef
Google scholar
|
[124] |
Marques I,Dencher NA, Videira A, Krause F (2007) Supramolecular organization of the respiratory chain in Neurospora crassamitochondria. Eukaryot Cell 6:2391–2405
CrossRef
Google scholar
|
[125] |
McMullan G, Faruqi AR, Clare D, Henderson R (2014) Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–163
CrossRef
Google scholar
|
[126] |
McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17
CrossRef
Google scholar
|
[127] |
Melo AM, Bandeiras TM, Teixeira M (2004) New insights into type II NAD(P)H: quinone oxidoreductases. Microbiol Mol Biol Rev 68:603–616
CrossRef
Google scholar
|
[128] |
Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS
CrossRef
Google scholar
|
[129] |
Milenkovic D, Blaza JN, Larsson N-G, Hirst J (2017) The enigma of the respiratory chain supercomplex. Cell Metab 25:765–776
CrossRef
Google scholar
|
[130] |
Mileykovskaya E, Penczek PA, Fang J, Mallampalli VK, Sparagna GC, Dowhan W (2012) Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy. J Biol Chem 287:23095–23103
CrossRef
Google scholar
|
[131] |
Mitchell P(1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144
CrossRef
Google scholar
|
[132] |
Mitchell P (1975a) The protonmotive Q cycle: a general formulation. FEBS Lett 59:137–139
CrossRef
Google scholar
|
[133] |
Mitchell P (1975b) Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett 56:1–6
CrossRef
Google scholar
|
[134] |
Mitchell P (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta (BBA) 1807:1507–1538
CrossRef
Google scholar
|
[135] |
Mourier A, Matic S, Ruzzenente B, Larsson NG, Milenkovic D (2014) The respiratory chain supercomplex organization is independent of COX7a2l isoforms. Cell Metab 20:1069–1075
CrossRef
Google scholar
|
[136] |
Muller F, Crofts AR, Kramer DM (2002) Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex. Biochemistry 41:7866–7874
CrossRef
Google scholar
|
[137] |
Nicholson WV, Glaeser RM (2001) Review: automatic particle detection in electron microscopy. J Struct Biol 133:90–101
CrossRef
Google scholar
|
[138] |
Nogales E,Scheres SH (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol Cell 58:677–689
CrossRef
Google scholar
|
[139] |
Nubel E, Wittig I, Kerscher S, Brandt U, Schagger H (2009) Twodimensional native electrophoretic analysis of respiratory supercomplexes from Yarrowia lipolytica. Proteomics 9:2408–2418
CrossRef
Google scholar
|
[140] |
Ogura T, Sato C (2004) Automatic particle pickup method using a neural network has high accuracy by applying an initial weight derived from eigenimages: a new reference free method for single-particle analysis. J Struct Biol 145:63–75
CrossRef
Google scholar
|
[141] |
Ohnishi T, Kawaguchi K, Hagihara B (1966) Preparation and some properties of yeast mitochondria. J Biol Chem 241:1797–1806
|
[142] |
Ohnishi T,Ohnishi ST, Shinzawa-Itoh K, Yoshikawa S, Weber RT (2012) EPR detection of two protein-associated ubiquinone components (SQ(Nf) and SQ(Ns)) in the membrane in situ and in proteoliposomes of isolated bovine heart complex I. Biochim Biophys Acta 1817:1803–1809
CrossRef
Google scholar
|
[143] |
Osuda Y, Shinzawa-Itoh K, Tani K, Maeda S, Yoshikawa S, Tsukihara T, Gerle C (2016) Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes. Microscopy (Oxf) 65:263–267
CrossRef
Google scholar
|
[144] |
Osyczka A, Moser CC, Daldal F, Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427:607–612
CrossRef
Google scholar
|
[145] |
Osyczka A, Moser CC, Dutton PL (2005) Fixing the Q cycle. Trends Biochem Sci 30:176–182
CrossRef
Google scholar
|
[146] |
Papa S, Capitanio G, Papa F (2018) The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes. Biol Rev 93:322–349
CrossRef
Google scholar
|
[147] |
Papa S, Martino PL, Capitanio G,Gaballo A, De Rasmo D, Signorile A, Petruzzella V (2012) The oxidative phosphorylation system in mammalian mitochondria. In: Scatena R, Bottoni P, Giardina B (eds) Advances in mitochondrial medicine. Springer, Dordrecht, pp 3–37
CrossRef
Google scholar
|
[148] |
Parey K, Brandt U, Xie H, Mills DJ, Siegmund K, Vonck J, Kuhlbrandt W, Zickermann V (2018) Cryo-EM structure of respiratory complex I at work. Elife 7:e39213
CrossRef
Google scholar
|
[149] |
Penczek PA, Grassucci RA, Frank J (1994) The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53:251–270
CrossRef
Google scholar
|
[150] |
Peng G, Fritzsch G, Zickermann V, Schagger H, Mentele R, Lottspeich F, Bostina M, Radermacher M, Huber R, Stetter KO
CrossRef
Google scholar
|
[151] |
Perez-Perez R, Lobo-Jarne T, Milenkovic D, Mourier A, Bratic A, Garcia-Bartolome A, Fernandez-Vizarra E, Cadenas S, Delmiro A, Garcia-Consuegra I
CrossRef
Google scholar
|
[152] |
Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92
CrossRef
Google scholar
|
[153] |
Pietras R, Sarewicz M, Osyczka A (2016) Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo site of cytochrome bc1 and their mechanistic implications. J R Soc Interface.https://doi.org/10.1098/rsif.2016.0133
CrossRef
Google scholar
|
[154] |
Pitceathly RDS, Taanman J-W (2018) NDUFA4 (Renamed COXFA4) is a cytochrome-c oxidase subunit. Trends Endocrinol Metab 29:452–454
CrossRef
Google scholar
|
[155] |
Powell HR (2017) X-ray data processing. Biosci Rep. https://doi.org/10.1042/BSR20170227
CrossRef
Google scholar
|
[156] |
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296
CrossRef
Google scholar
|
[157] |
Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, Zickermann V (2006) The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J Struct Biol 154:269–279
CrossRef
Google scholar
|
[158] |
Radermacher M, Wagenknecht T, Verschoor A, Frank J (1987) Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli . J Microsc 146:113–136
CrossRef
Google scholar
|
[159] |
Ragan CI, Heron C (1978) The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association. Biochem J 174:783–790
CrossRef
Google scholar
|
[160] |
Ramirez-Aguilar SJ, Keuthe M, Rocha M, Fedyaev VV, Kramp K, Gupta KJ, Rasmusson AG, Schulze WX, van Dongen JT (2011) The composition of plant mitochondrial supercomplexes changes with oxygen availability. J Biol Chem 286:43045–43053
CrossRef
Google scholar
|
[161] |
Rathore S, Berndtsson J, Marin-Buera L, Conrad J, Carroni M, Brzezinski P, Ott M (2019) Cryo-EM structure of the yeast respiratory supercomplex. Nat Struct Mol Biol 26:50–57
CrossRef
Google scholar
|
[162] |
Razinkov I,Dandey V, Wei H,Zhang Z, Melnekoff D, Rice WJ, Wigge C, Potter CS, Carragher B (2016) A new method for vitrifying samples for cryoEM. J Struct Biol 195:190–198
CrossRef
Google scholar
|
[163] |
Reifschneider NH, Goto S, Nakamoto H, Takahashi R, Sugawa M, Dencher NA, Krause F (2006) Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/SDS-PAGE. J Proteome Res 5:1117–1132
CrossRef
Google scholar
|
[164] |
Robinson AL (1986) Electron microscope inventors share nobel physics prize. Science 234:821–822
CrossRef
Google scholar
|
[165] |
Rubinstein JL, Brubaker MA (2015) Alignment of cryo-EM movies of individual particles by optimization of image translations. J Struct Biol 192:188–195
CrossRef
Google scholar
|
[166] |
Russo CJ, Passmore LA (2016) Progress towards an optimal specimen support for electron cryomicroscopy. Curr Opin Struct Biol 37:81–89
CrossRef
Google scholar
|
[167] |
Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388
CrossRef
Google scholar
|
[168] |
Sazanov LA, Baradaran R,Efremov RG, Berrisford JM, Minhas G (2013) A long road towards the structure of respiratory complex I, a giant molecular proton pump. Biochem Soc Trans 41:1265–1271
CrossRef
Google scholar
|
[169] |
Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783
CrossRef
Google scholar
|
[170] |
Schafer E, Dencher NA, Vonck J, Parcej DN (2007) Threedimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry 46:12579–12585
CrossRef
Google scholar
|
[171] |
Schafer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281:15370–15375
CrossRef
Google scholar
|
[172] |
Schagger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279:36349–36353
CrossRef
Google scholar
|
[173] |
Schagger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867
|
[174] |
Schapira AHV (2006) Mitochondrial disease. The Lancet 368:70–82
CrossRef
Google scholar
|
[175] |
Scharfe C, Lu HH-S, Neuenburg JK, Allen EA, Li G-C, Klopstock T, Cowan TM, Enns GM, Davis RW (2009) Mapping Gene Associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol 5:e1000374
CrossRef
Google scholar
|
[176] |
Scheres SH (2012a) A Bayesian view on cryo-EM structure determination. J Mol Biol 415:406–418
CrossRef
Google scholar
|
[177] |
Scheres SH (2012b) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530
CrossRef
Google scholar
|
[178] |
Scheres SH (2014) Beam-induced motion correction for submegadalton cryo-EM particles. Elife 3:e03665
CrossRef
Google scholar
|
[179] |
Scheres SH (2016) Processing of structurally heterogeneous cryo- EM data in RELION. Methods Enzymol 579:125–157
CrossRef
Google scholar
|
[180] |
Scheres SH, Chen S (2012) Prevention of overfitting in cryo-EM structure determination. Nat Methods 9:853–854
CrossRef
Google scholar
|
[181] |
Schur FK (2019) Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging. Curr Opin Struct Biol 58:1–9
CrossRef
Google scholar
|
[182] |
Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8:192–197
CrossRef
Google scholar
|
[183] |
Shi Y (2014) A glimpse of structural biology through X-ray crystallography. Cell 159:995–1014
CrossRef
Google scholar
|
[184] |
Sigworth FJ (1998) A maximum-likelihood approach to singleparticle image refinement. J Struct Biol 122:328–339
CrossRef
Google scholar
|
[185] |
Sousa JS, D’Imprima E, Vonck J (2018) Mitochondrial respiratory chain complexes. In: Harris JR, Boekema EJ (eds) Membrane protein complexes: structure and function. Springer, Singapore,pp 167–227
CrossRef
Google scholar
|
[186] |
Sousa JS, Mills DJ, Vonck J, Kuhlbrandt W (2016) Functional asymmetry and electron flow in the bovine respirasome. Elife. https://doi.org/10.7554/eLife.21290
CrossRef
Google scholar
|
[187] |
Standfuss J (2019) Membrane protein dynamics studied by X-ray lasers- or why only time will tell. Curr Opin Struct Biol 57:63–71
CrossRef
Google scholar
|
[188] |
Starkov AA, Fiskum G (2001) Myxothiazol induces H2O2 production from mitochondrial respiratory chain. Biochem Biophys Res Commun 281:645–650
CrossRef
Google scholar
|
[189] |
Strauss M, Hofhaus G, Schroder RR, Kuhlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160
CrossRef
Google scholar
|
[190] |
Strecker V, Wumaier Z, Wittig I, Schagger H (2010) Large pore gels to separate mega protein complexes larger than 10 MDa by blue native electrophoresis: isolation of putative respiratory strings or patches. Proteomics 10:3379–3387
CrossRef
Google scholar
|
[191] |
Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig B, Schagger H (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 279:5000–5007
CrossRef
Google scholar
|
[192] |
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057
CrossRef
Google scholar
|
[193] |
Taylor KA, Glaeser RM (1974) Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–1037
CrossRef
Google scholar
|
[194] |
Trouillard M, Meunier B, Rappaport F (2011) Questioning the functional relevance of mitochondrial supercomplexes by timeresolved analysis of the respiratory chain. Proc Natl Acad Sci USA 108:E1027–1034
CrossRef
Google scholar
|
[195] |
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269:1069–1074
CrossRef
Google scholar
|
[196] |
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144
CrossRef
Google scholar
|
[197] |
Turonova B, Schur FKM, Wan W, Briggs JAG (2017) Efficient 3DCTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4A. J Struct Biol 199:187–195
CrossRef
Google scholar
|
[198] |
van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194
CrossRef
Google scholar
|
[199] |
van Heel M, Keegstra W (1981) IMAGIC: a fast, flexible and friendly image analysis software system. Ultramicroscopy 7:113–129
CrossRef
Google scholar
|
[200] |
Vartak R, Porras CA-M, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4:582–590
CrossRef
Google scholar
|
[201] |
Vempati UD, Han X, Moraes CT (2009) Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J Biol Chem 284:4383–4391
CrossRef
Google scholar
|
[202] |
Verner Z, Skodova I, Polakova S, Durisova-Benkovicova V, Horvath A, Lukes J (2013) Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei. Parasitology 140:328–337
CrossRef
Google scholar
|
[203] |
Vinothkumar KR, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515:80
CrossRef
Google scholar
|
[204] |
Vonck J (2012) Supramolecular organization of the respiratory chain
CrossRef
Google scholar
|
[205] |
Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, Hagel P, Sitsel O, Raisch T, Prumbaum D
CrossRef
Google scholar
|
[206] |
Wan W, Briggs JA (2016) Cryo-electron tomography and subtomogram averaging. Methods Enzymol 579:329–367
CrossRef
Google scholar
|
[207] |
Wang F, Gong H, Liu G, Li M,Yan C, Xia T, Li X, Zeng J (2016) DeepPicker: a deep learning approach for fully automated particle picking in cryo-EM. J Struct Biol 195:325–336
CrossRef
Google scholar
|
[208] |
Wang HW, Wang JW (2017) How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci 26:32–39
CrossRef
Google scholar
|
[209] |
Wang Y, Zhang SXL, Gozal D (2010) Reactive oxygen species and the brain in sleep apnea. Respir Physiol Neurobiol 174:307–316
CrossRef
Google scholar
|
[210] |
Wharton DC, Tzagoloff A (1962) Studies on the electron transfer system. J Biol Chem 237:2051–2061
|
[211] |
White HD, Thirumurugan K, Walker ML, Trinick J (2003) A second generation apparatus for time-resolved electron cryo-microscopy using stepper motors and electrospray. J Struct Biol 144:246–252
CrossRef
Google scholar
|
[212] |
Wikstrom M, Sharma V, Kaila VR, Hosler JP, Hummer G (2015) New perspectives on proton pumping in cellular respiration. Chem Rev 115:2196–2221
CrossRef
Google scholar
|
[213] |
Williams EG, Wu Y, Jha P,Dubuis S, Blattmann P, Argmann CA, Houten SM, Amariuta T, Wolski W, Zamboni N
CrossRef
Google scholar
|
[214] |
Wiseman B, Nitharwal RG, Fedotovskaya O, Schafer J, Guo H, Kuang Q, Benlekbir S, Sjostrand D, Adelroth P, Rubinstein JL
CrossRef
Google scholar
|
[215] |
Wittig I, Braun HP, Schagger H (2006a) Blue native PAGE. Nat Protoc 1:418–428
CrossRef
Google scholar
|
[216] |
Wittig I, Carrozzo R, Santorelli FM, Schagger H (2006b) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072
CrossRef
Google scholar
|
[217] |
Wittig I, Schagger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787:672–680
CrossRef
Google scholar
|
[218] |
Wong HC, Chen J,Mouche F, Rouiller I, Bern M (2004) Model-based particle picking for cryo-electron microscopy. J Struct Biol 145:157–167
CrossRef
Google scholar
|
[219] |
Wright JJ, Salvadori E, Bridges HR, Hirst J, Roessler MM (2016) Small-volume potentiometric titrations: EPR investigations of Fe-S cluster N2 in mitochondrial complex I. J Inorg Biochem 162:201–206
CrossRef
Google scholar
|
[220] |
Wu M, Gu J,Guo R, Huang Y, Yang M (2016) Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167:1598–1609.e1510
CrossRef
Google scholar
|
[221] |
Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66
CrossRef
Google scholar
|
[222] |
Yang XH, Trumpower BL (1986) Purification of a three-subunit ubiquinol-cytochrome c oxidoreductase complex from Paracoccus denitrificans. J Biol Chem 261:12282–12289
|
[223] |
Yang YQ, Yu Y, Li XL, Li J, Wu Y, Yu J, Ge JP, Huang ZH, Jiang LB, Rao Y
CrossRef
Google scholar
|
[224] |
Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C,Byrne B, Cecchini G,Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704
CrossRef
Google scholar
|
[225] |
Yano T,Rahimian M, Aneja KK, Schechter NM, Rubin H, Scott CP (2014) Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites. Biochemistry 53:1179–1190
CrossRef
Google scholar
|
[226] |
Yoshikawa S, Shimada A (2015) Reaction mechanism of cytochrome c oxidase. Chem Rev 115:1936–1989
CrossRef
Google scholar
|
[227] |
Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T
CrossRef
Google scholar
|
[228] |
Zeviani M, Di Donato S (2004) Mitochondrial disorders. Brain 127:2153–2172
CrossRef
Google scholar
|
[229] |
Zhang M, Mileykovskaya E, Dowhan W(2002) Gluing the respiratory chain together: cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556
CrossRef
Google scholar
|
[230] |
Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA, Kim SH (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684
CrossRef
Google scholar
|
[231] |
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332
CrossRef
Google scholar
|
[232] |
Zhu J,Vinothkumar KR, Hirst J (2016) Structure of mammalian respiratory complex I. Nature 536:354
CrossRef
Google scholar
|
[233] |
Zivanov J, Nakane T,Scheres SHW (2019) A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6:5–17
CrossRef
Google scholar
|
[234] |
Zong S, Gu J, Liu T, Guo R, Wu M, Yang M (2018a) UQCRFS1N assembles mitochondrial respiratory complex-III into an asymmetric 21-subunit dimer. Protein Cell 9:586–591
CrossRef
Google scholar
|
[235] |
Zong S, Wu M,Gu J, Liu T, Guo R, Yang M (2018b) Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res 28:1026–1034
CrossRef
Google scholar
|
/
〈 | 〉 |