Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs

Rui Fu , Dawei Yu , Jilong Ren , Chongyang Li , Jing Wang , Guihai Feng , Xuepeng Wang , Haifeng Wan , Tianda Li , Libin Wang , Ying Zhang , Tang Hai , Wei Li , Qi Zhou

Protein Cell ›› 2020, Vol. 11 ›› Issue (2) : 97 -107.

PDF (3549KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (2) : 97 -107. DOI: 10.1007/s13238-019-00676-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs

Author information +
History +
PDF (3549KB)

Abstract

Blastocyst complementation by pluripotent stem cell (PSC) injection is believed to be the most promising method to generate xenogeneic organs. However, ethical issues prevent the study of human chimeras in the late embryonic stage of development. Primate embryonic stem cells (ESCs), which have similar pluripotency to human ESCs, are a good model for studying interspecies chimerism and organ generation. However, whether primate ESCs can be used in xenogenous grafts remains unclear. In this study, we evaluated the chimeric ability of cynomolgus monkey (Macaca fascicularis) ESCs (cmESCs) in pigs, which are excellent hosts because of their many similarities to humans. We report an optimized culture medium that enhanced the anti-apoptotic ability of cmESCs and improved the development of chimeric embryos, in which domesticated cmESCs (D-ESCs) injected into pig blastocysts differentiated into cells of all three germ layers. In addition, we obtained two neonatal interspecies chimeras, in which we observed tissue-specific D-ESC differentiation. Taken together, the results demonstrate the capability of D-ESCs to integrate and differentiate into functional cells in a porcine model, with a chimeric ratio of 0.001–0.0001 in different neonate tissues. We believe this work will facilitate future developments in xenogeneic organogenesis, bringing us one step closer to producing tissue-specific functional cells and organs in a large animal model through interspecies blastocyst complementation.

Keywords

embryonic stem cells / blastocyst complementation / cynomolgus monkey / pig / interspecies chimera / organ reconstruction

Cite this article

Download citation ▾
Rui Fu, Dawei Yu, Jilong Ren, Chongyang Li, Jing Wang, Guihai Feng, Xuepeng Wang, Haifeng Wan, Tianda Li, Libin Wang, Ying Zhang, Tang Hai, Wei Li, Qi Zhou. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs. Protein Cell, 2020, 11(2): 97-107 DOI:10.1007/s13238-019-00676-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, Kay MA, Finegold M, Grompe M (2007) Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 25:903–910

[2]

Boroviak T, Loos R, Bertone P,Smith A, Nichols J(2014) The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 16:516–528

[3]

Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa Chuva, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

[4]

Chen Y,Niu Y, Li Y, Ai Z, Kang Y, Shi H, Xiang Z,Yang Z, Tan T, Si W (2015) Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17:116–124

[5]

Cohen MA, Wert KJ, Goldmann J, Markoulaki S, Buganim Y, Fu D, Jaenisch R (2016) Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos. Proc Natl Acad Sci USA 113:1570–1575

[6]

Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286

[7]

Goto T, Hara H, Sanbo M, Masaki H, Sato H, Yamaguchi T, Hochi S, Kobayashi T, Nakauchi H, Hirabayashi M (2019) Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat Commun.

[8]

Goyama S, Wunderlich M, Mulloy JC (2015) Xenograft models for normal and malignant stem cells. Blood 125:2630–2640

[9]

Huang K, Zhu Y, Ma Y, Zhao B, Fan N, Li Y, Song H, Chu S, Ouyang Z, Zhang Q (2018) BMI1 enables interspecies chimerism with human pluripotent stem cells. Nat Commun 9:4649

[10]

Isotani A, Hatayama H, Kaseda K, Ikawa M, Okabe M (2011) Formation of a thymus from rat ES cells in xenogeneic nude mouse↔rat ES chimeras. Genes Cells 16:397–405

[11]

Jachowicz JW, Bing X, Pontabry J, Boskovic A, Rando OJ, Torres-Padilla ME (2017) LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 49:1502–1510

[12]

Kang Y, Ai Z, Duan K, Si C, Wang Y, Zheng Y, He J, Yin Y, Zhao S, Niu B (2018) Improving cell survival in injected embryos allows primed pluripotent stem cells to generate chimeric cynomolgus monkeys. Cell Rep 25(2563–2576):e2569

[13]

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

[14]

Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787–799

[15]

Li TD, Feng GH, Li YF, Wang M, Mao JJ, Wang JQ, Li X, Wang XP, Qu B, Wang LY(2017) Rat embryonic stem cells produce fertile offspring through tetraploid complementation. Proc Natl Acad Sci USA 114:11974–11979

[16]

Mascetti VL, Pedersen RA (2016) Human–mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 18:67–72

[17]

Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

[18]

Niu Y, Yu Y, Bernat A, Yang S,He X, Guo X, Chen D, Chen Y, Ji S, Si W (2010) Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc Natl Acad Sci USA 107:17663–17667

[19]

Rossant J (2015) Mouse and human blastocyst-derived stem cells: vive les differences. Development 142:9–12

[20]

Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–487

[21]

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM(1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

[22]

Tsukiyama T, Ohinata Y (2014) A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PLoS ONE 9:e95329

[23]

Wang J,Wang L, Feng G,Wang Y, Li Y, Li X, Liu C, Jiao G, Huang C, Shi J (2018a) Asymmetric expression of LincGET biases cell fate in two-cell mouse embryos. Cell 175(1887–1901):e1818

[24]

Wang X, Li T, Cui T, Yu D, Liu C, Jiang L, Feng G, Wang L, Fu R, Zhang X (2018b) Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis. Cell Res 28:126–129

[25]

Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C, Walters EM (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78

[26]

Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, He Y, Li Z, Benner C, Tamura I(2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521:316–321

[27]

Wu J,Greely HT, Jaenisch R, Nakauchi H, Rossant J, Belmonte JC (2016) Stem cells and interspecies chimaeras. Nature 540:51–59

[28]

Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell 168(473–486):e415

[29]

Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W (2017) Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169(243–257):e225

[30]

Yuan Y, Spate LD, Redel BK, Tian Y, Zhou J, Prather RS, Roberts RM (2017) Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc Natl Acad Sci USA 114:E5796–E5804

[31]

Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665

[32]

Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461:86–90

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (3549KB)

Supplementary files

PAC-0097-19314-ZQ_suppl_1

1050

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/