Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs
Rui Fu, Dawei Yu, Jilong Ren, Chongyang Li, Jing Wang, Guihai Feng, Xuepeng Wang, Haifeng Wan, Tianda Li, Libin Wang, Ying Zhang, Tang Hai, Wei Li, Qi Zhou
Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs
Blastocyst complementation by pluripotent stem cell (PSC) injection is believed to be the most promising method to generate xenogeneic organs. However, ethical issues prevent the study of human chimeras in the late embryonic stage of development. Primate embryonic stem cells (ESCs), which have similar pluripotency to human ESCs, are a good model for studying interspecies chimerism and organ generation. However, whether primate ESCs can be used in xenogenous grafts remains unclear. In this study, we evaluated the chimeric ability of cynomolgus monkey (Macaca fascicularis) ESCs (cmESCs) in pigs, which are excellent hosts because of their many similarities to humans. We report an optimized culture medium that enhanced the anti-apoptotic ability of cmESCs and improved the development of chimeric embryos, in which domesticated cmESCs (D-ESCs) injected into pig blastocysts differentiated into cells of all three germ layers. In addition, we obtained two neonatal interspecies chimeras, in which we observed tissue-specific D-ESC differentiation. Taken together, the results demonstrate the capability of D-ESCs to integrate and differentiate into functional cells in a porcine model, with a chimeric ratio of 0.001–0.0001 in different neonate tissues. We believe this work will facilitate future developments in xenogeneic organogenesis, bringing us one step closer to producing tissue-specific functional cells and organs in a large animal model through interspecies blastocyst complementation.
embryonic stem cells / blastocyst complementation / cynomolgus monkey / pig / interspecies chimera / organ reconstruction
[1] |
Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, Kay MA, Finegold M, Grompe M (2007) Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 25:903–910
CrossRef
Google scholar
|
[2] |
Boroviak T, Loos R, Bertone P,Smith A, Nichols J(2014) The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 16:516–528
CrossRef
Google scholar
|
[3] |
Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa Chuva, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA
CrossRef
Google scholar
|
[4] |
Chen Y,Niu Y, Li Y, Ai Z, Kang Y, Shi H, Xiang Z,Yang Z, Tan T, Si W
CrossRef
Google scholar
|
[5] |
Cohen MA, Wert KJ, Goldmann J, Markoulaki S, Buganim Y, Fu D, Jaenisch R (2016) Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos. Proc Natl Acad Sci USA 113:1570–1575
CrossRef
Google scholar
|
[6] |
Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A
CrossRef
Google scholar
|
[7] |
Goto T, Hara H, Sanbo M, Masaki H, Sato H, Yamaguchi T, Hochi S, Kobayashi T, Nakauchi H, Hirabayashi M (2019) Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat Commun.https://doi.org/10.1038/s41467-019-08394-9
CrossRef
Google scholar
|
[8] |
Goyama S, Wunderlich M, Mulloy JC (2015) Xenograft models for normal and malignant stem cells. Blood 125:2630–2640
CrossRef
Google scholar
|
[9] |
Huang K, Zhu Y, Ma Y, Zhao B, Fan N, Li Y, Song H, Chu S, Ouyang Z, Zhang Q
CrossRef
Google scholar
|
[10] |
Isotani A, Hatayama H, Kaseda K, Ikawa M, Okabe M (2011) Formation of a thymus from rat ES cells in xenogeneic nude mouse↔rat ES chimeras. Genes Cells 16:397–405
CrossRef
Google scholar
|
[11] |
Jachowicz JW, Bing X, Pontabry J, Boskovic A, Rando OJ, Torres-Padilla ME (2017) LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 49:1502–1510
CrossRef
Google scholar
|
[12] |
Kang Y, Ai Z, Duan K, Si C, Wang Y, Zheng Y, He J, Yin Y, Zhao S, Niu B
CrossRef
Google scholar
|
[13] |
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
CrossRef
Google scholar
|
[14] |
Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS
CrossRef
Google scholar
|
[15] |
Li TD, Feng GH, Li YF, Wang M, Mao JJ, Wang JQ, Li X, Wang XP, Qu B, Wang LY
CrossRef
Google scholar
|
[16] |
Mascetti VL, Pedersen RA (2016) Human–mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 18:67–72
CrossRef
Google scholar
|
[17] |
Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492
CrossRef
Google scholar
|
[18] |
Niu Y, Yu Y, Bernat A, Yang S,He X, Guo X, Chen D, Chen Y, Ji S, Si W
CrossRef
Google scholar
|
[19] |
Rossant J (2015) Mouse and human blastocyst-derived stem cells: vive les differences. Development 142:9–12
CrossRef
Google scholar
|
[20] |
Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L
CrossRef
Google scholar
|
[21] |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM(1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147
CrossRef
Google scholar
|
[22] |
Tsukiyama T, Ohinata Y (2014) A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PLoS ONE 9:e95329
CrossRef
Google scholar
|
[23] |
Wang J,Wang L, Feng G,Wang Y, Li Y, Li X, Liu C, Jiao G, Huang C, Shi J
CrossRef
Google scholar
|
[24] |
Wang X, Li T, Cui T, Yu D, Liu C, Jiang L, Feng G, Wang L, Fu R, Zhang X
CrossRef
Google scholar
|
[25] |
Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C, Walters EM
CrossRef
Google scholar
|
[26] |
Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, He Y, Li Z, Benner C, Tamura I
CrossRef
Google scholar
|
[27] |
Wu J,Greely HT, Jaenisch R, Nakauchi H, Rossant J, Belmonte JC (2016) Stem cells and interspecies chimaeras. Nature 540:51–59
CrossRef
Google scholar
|
[28] |
Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M
CrossRef
Google scholar
|
[29] |
Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W
CrossRef
Google scholar
|
[30] |
Yuan Y, Spate LD, Redel BK, Tian Y, Zhou J, Prather RS, Roberts RM (2017) Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc Natl Acad Sci USA 114:E5796–E5804
CrossRef
Google scholar
|
[31] |
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z
CrossRef
Google scholar
|
[32] |
Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L
CrossRef
Google scholar
|
/
〈 | 〉 |