Sialylation is involved in cell fate decision during development, reprogramming and cancer progression
Fenjie Li, Junjun Ding
Sialylation is involved in cell fate decision during development, reprogramming and cancer progression
Sialylation, or the covalent addition of sialic acid to the terminal end of glycoproteins, is a biologically important modification that is involved in embryonic development, neurodevelopment, reprogramming, oncogenesis and immune responses. In this review, we have given a comprehensive overview of the current literature on the involvement of sialylation in cell fate decision during development, reprogramming and cancer progression. Sialylation is essential for early embryonic development and the deletion of UDP-GlcNAc 2-epimerase, a rate-limiting enzyme in sialic acid biosynthesis, is embryonically lethal. Furthermore, the sialyltransferase ST6GAL1 is required for somatic cell reprogramming, and its downregulation is associated with decreased reprogramming efficiency. In addition, sialylation levels and patterns are altered during cancer progression, indicating the potential of sialylated molecules as cancer biomarkers. Taken together, the current evidences demonstrate that sialylation is involved in crucial cell fate decision.
sialylation / cell fate / development / reprogramming / cancer
[1] |
Abeln M, Borst KM, Cajic S, Thiesler H, Kats E, Albers I, Kuhn M, Kaever V, Erdmann RB, Munster-Kuhnel A
CrossRef
Google scholar
|
[2] |
Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102(2):439–469
CrossRef
Google scholar
|
[3] |
Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR, Varki A (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277(27):24466–24474
CrossRef
Google scholar
|
[4] |
Badr HA, Alsadek DM, Darwish AA, Elsayed AI, Bekmanov BO, Khussainova EM, Zhang X, Cho WC, Djansugurova LB, Li CZ (2014) Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. Expert Rev Proteomics 11(2):227–236
CrossRef
Google scholar
|
[5] |
Baldus SE, Zirbes TK, Monig SP, Engel S, Monaca E, Rafiqpoor K, Hanisch FG, Hanski C, Thiele J, Pichlmaier H
CrossRef
Google scholar
|
[6] |
Ballehaninna UK, Chamberlain RS (2012) The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J Gastrointest Oncol 3(2):105–119
|
[7] |
Bhide GP, Colley KJ (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 147(2):149–174
CrossRef
Google scholar
|
[8] |
Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F
CrossRef
Google scholar
|
[9] |
Blix G (1936) Über die Kohlenhydratgruppen des Submaxillarismucins. Hoppe-Seyler's Zeitschrift für physiologische Chemie 240(1–2):43–54
CrossRef
Google scholar
|
[10] |
Blix FG, Gottschalk A, Klenk E (1957) Proposed nomenclature in the field of neuraminic and sialic acids. Nature 179(4569):1088
CrossRef
Google scholar
|
[11] |
Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330(6004):612–616
CrossRef
Google scholar
|
[12] |
Born GV, Palinski W (1985) Unusually high concentrations of sialic acids on the surface of vascular endothelia. Br J Exp Pathol 66(5):543–549
|
[13] |
Cazet A, Julien S, Bobowski M, Krzewinski-Recchi MA, Harduin-Lepers A, Groux-Degroote S, Delannoy P (2010) Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res 345(10):1377–1383
CrossRef
Google scholar
|
[14] |
Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5(2):163–176
CrossRef
Google scholar
|
[15] |
Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, Kang ML, Wong CH, Juan LJ (2014) O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci USA 111 (4):1355–1360
CrossRef
Google scholar
|
[16] |
Close BE, Colley KJ (1998) In vivo autopolysialylation and localization of the polysialyltransferases PST and STX. J Biol Chem 273(51):34586–34593
CrossRef
Google scholar
|
[17] |
Coates SW, Gurney T Jr, Sommers LW, Yeh M, Hirschberg CB (1980) Subcellular localization of sugar nucleotide synthetases. J Biol Chem 255(19):9225–9229
|
[18] |
Comb DG, Roseman S (1958) Enzymic synthesis of N-acetyl-Dmannosamine. Biochim Biophys Acta 29(3):653–654
CrossRef
Google scholar
|
[19] |
Corfield AP (2015) Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 1850(1):236–252
CrossRef
Google scholar
|
[20] |
Corfield AP, Myerscough N, Warren BF, Durdey P, Paraskeva C, Schauer R (1999) Reduction of sialic acid O-acetylation in human colonic mucins in the adenoma-carcinoma sequence. Glycoconj J 16(6):307–317
CrossRef
Google scholar
|
[21] |
Cui HX, Wang H, Wang Y, Song J, Tian H, Xia C, Shen Y (2016) ST3Gal III modulates breast cancer cell adhesion and invasion by altering the expression of invasion-related molecules. Oncol Rep 36(6):3317–3324
CrossRef
Google scholar
|
[22] |
Dalziel M, Whitehouse C, McFarlane I, Brockhausen I, Gschmeissner S, Schwientek T, Clausen H, Burchell JM, Taylor-Papadimitriou J (2001) The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J Biol Chem 276(14):11007–11015
CrossRef
Google scholar
|
[23] |
Dao TL, Ip C, Patel J (1980) Serum sialyltransferase and 5’-nucleotidase as reliable biomarkers in women with breast cancer. J Natl Cancer Inst 65(3):529–534
|
[24] |
Deng LQ, Chen X, Varki A (2013) Exploration of sialic acid diversity and biology using sialoglycan microarrays. Biopolymers 99 (10):650–665
CrossRef
Google scholar
|
[25] |
Dickson JJ, Messer M (1978) Intestinal neuraminidase activity of suckling rats and other mammals. Relationship to the sialic acid content of milk. Biochem J 170(2):407–413
CrossRef
Google scholar
|
[26] |
Du J, Meledeo MA, Wang Z, Khanna HS, Paruchuri VD, Yarema KJ (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19(12):1382–1401
CrossRef
Google scholar
|
[27] |
Du J, Hong S, Dong L, Cheng B, Lin L, Zhao B, Chen YG, Chen X (2015) Dynamic sialylation in transforming growth factor-beta (TGF-beta)-induced epithelial to mesenchymal transition. J Biol Chem 290(19):12000–12013
CrossRef
Google scholar
|
[28] |
Duraker N, Hot S, Polat Y, Hobek A, Gencler N, Urhan N (2007) CEA, CA 19-9, and CA 125 in the differential diagnosis of benign and malignant pancreatic diseases with or without jaundice. J Surg Oncol 95(2):142–147
CrossRef
Google scholar
|
[29] |
Eckhardt M, Gerardy-Schahn R (1998) Genomic organization of the murine polysialyltransferase gene ST8SiaIV (PST-1). Glycobiology 8(12):1165–1172
CrossRef
Google scholar
|
[30] |
Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156
CrossRef
Google scholar
|
[31] |
Eylar EH, Madoff MA, Brody OV, Oncley JL (1962) The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem 237:1992–2000
|
[32] |
Fleming SC, Smith S, Knowles D, Skillen A, Self CH (1998) Increased sialylation of oligosaccharides on IgG paraproteins–a potential new tumour marker in multiple myeloma. J Clin Pathol 51(11):825–830
CrossRef
Google scholar
|
[33] |
Fuster MM, Esko JD (2005) The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542
CrossRef
Google scholar
|
[34] |
Gal B, Ruano MJ, Puente R, Garcia-Pardo LA, Rueda R, Gil A, Hueso P (1997) Developmental changes in UDP-N-acetylglucosamine 2-epimerase activity of rat and guinea-pig liver. Comp Biochem Physiol B: Biochem Mol Biol 118(1):13–15
CrossRef
Google scholar
|
[35] |
Gerardy-Schahn R, Delannoy P, von Itzstein M (2015) SialoGlyco chemistry and biology II tools and techniques to identify and capture sialoglycans preface. Sialoglyco Chemistry and Biology Ii 367:V–Vii
CrossRef
Google scholar
|
[36] |
Ghosh S, Roseman S (1961) Enzymatic phosphorylation of N-acetyl-D-mannosamine. Proc Natl Acad Sci USA 47:955–958
CrossRef
Google scholar
|
[37] |
Hakomori S (1985) Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res 45(6):2405–2414
|
[38] |
Hamamoto T, Kawasaki M, Kurosawa N, Nakaoka T, Lee YC, Tsuji S (1993) Two step single primer mediated polymerase chain reaction. Application to cloning of putative mouse, beta-galactoside alpha 2,6-sialyltransferase cDNA. Bioorg Med Chem 1(2):141–145
CrossRef
Google scholar
|
[39] |
Hanover JA (2001) Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J 15(11):1865–1876
CrossRef
Google scholar
|
[40] |
Hasehira K, Tateno H, Onuma Y, Ito Y, Asashima M, Hirabayashi J (2012) Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Mol Cell Proteomics 11(12):1913–1923
CrossRef
Google scholar
|
[41] |
Hata K, Tochigi T, Sato I, Kawamura S, Shiozaki K, Wada T, Takahashi K, Moriya S, Yamaguchi K, Hosono M
CrossRef
Google scholar
|
[42] |
Hatano K, Miyamoto Y, Mori M, Nimura K, Nakai Y, Nonomura N, Kaneda Y (2012) Androgen-regulated transcriptional control of sialyltransferases in prostate cancer cells. PLoS ONE 7(2): e31234
CrossRef
Google scholar
|
[43] |
Henderson M, Kessel D (1977) Alterations in plasma sialyltransferase levels in patients with neoplastic disease. Cancer 39(3):1129–1134
CrossRef
Google scholar
|
[44] |
Hudak JE, Canham SM, Bertozzi CR (2014) Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10(1):69–75
CrossRef
Google scholar
|
[45] |
Ikehara Y, Shimizu N, Kono M, Nishihara S, Nakanishi H, Kitamura T, Narimatsu H, Tsuji S, Tatematsu M (1999) A novel glycosyltransferase with a polyglutamine repeat; a new candidate for GD1alpha synthase (ST6GalNAc V)(1). FEBS Lett 463(1–2):92–96
CrossRef
Google scholar
|
[46] |
James WM, Agnew WS (1987) Multiple oligosaccharide chains in the voltage-sensitive Na channel from electrophorus electricus: evidence for alpha-2,8-linked polysialic acid. Biochem Biophys Res Commun 148(2):817–826
CrossRef
Google scholar
|
[47] |
Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Demoulins T, Schneider C, Wehrli M, Hunger RE, Baerlocher GM
CrossRef
Google scholar
|
[48] |
Jiang C, Liu S, He W, Zhang B, Xia L (2017) The prognostic and predictive value of carbohydrate antigen 19-9 in metastatic colorectal cancer patients with first line bevacizumab containing chemotherapy. J Cancer 8(8):1410–1416
CrossRef
Google scholar
|
[49] |
Jones RB, Dorsett KA, Hjelmeland AB, Bellis SL (2018) The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1α signaling. J Biol Chem 293(15):jbc-RA117
CrossRef
Google scholar
|
[50] |
Jourdian GW, Swanson AL, Watson D, Roseman S (1964) Isolation of sialic acid 9-phosphatase from human erythrocytes. J Biol Chem 239:PC2714-6
|
[51] |
Kakugawa Y, Wada T, Yamaguchi K, Yamanami H, Ouchi K, Sato I, Miyagi T (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci USA 99(16):10718–10723
CrossRef
Google scholar
|
[52] |
Kannagi R (2007) Carbohydrate antigen sialyl Lewis a–its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med J 30(3):189–209
|
[53] |
Kashef J, Franz CM (2015) Quantitative methods for analyzing cellcell adhesion in development. Dev Biol 401(1):165–174
CrossRef
Google scholar
|
[54] |
Kiermaier E, Moussion C, Veldkamp CT, Gerardy-Schahn R, de Vries I, Williams LG, Chaffee GR, Phillips AJ, Freiberger F, Imre R
CrossRef
Google scholar
|
[55] |
Klenk E (1941) Neuraminsäure, das Spaltprodukt eines neuen Gehirnlipoids. Hoppe-Seyler's Zeitschrift für physiologische Chemie 268(1–2):50–58
CrossRef
Google scholar
|
[56] |
Kochlamazashvili G, Senkov O, Grebenyuk S, Robinson C, Xiao MF, Stummeyer K, Gerardy-Schahn R, Engel AK, Feig L, Semyanov A
CrossRef
Google scholar
|
[57] |
Kodar K, Stadlmann J, Klaamas K, Sergeyev B, Kurtenkov O (2012) Immunoglobulin G Fc N-glycan profiling in patients with gastric cancer by LC-ESI-MS: relation to tumor progression and survival. Glycoconj J 29(1):57–66
CrossRef
Google scholar
|
[58] |
Kono M, Takashima S, Liu H, Inoue M, Kojima N, Lee YC, Hamamoto T, Tsuji S (1998) Molecular cloning and functional expression of a fifth-type alpha 2,3-sialyltransferase (mST3Gal V: GM3 synthase). Biochem Biophys Res Commun 253(1):170–175
CrossRef
Google scholar
|
[59] |
Krzewinski-Recchi MA, Julien S, Juliant S, Teintenier-Lelievre M, Samyn-Petit B, Montiel MD, Mir AM, Cerutti M, Harduin-Lepers A, Delannoy P (2003) Identification and functional expression of a second human beta-galactoside alpha 2,6-sialyltransferase, ST6Gal II. Eur J Biochem 270(5):950–961
CrossRef
Google scholar
|
[60] |
Kurosawa N, Inoue M, Yoshida Y, Tsuji S (1996) Molecular cloning and genomic analysis of mouse Galbeta 1, 3GalNAc-specific GalNAc alpha2,6-sialyltransferase. J Biol Chem 271(25):15109–15116
CrossRef
Google scholar
|
[61] |
Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134
CrossRef
Google scholar
|
[62] |
Le Marer N, Laudet V, Svensson EC, Cazlaris H, Van Hille B, Lagrou C, Stehelin D, Montreuil J, Verbert A, Delannoy P (1992) The c-Ha-ras oncogene induces increased expression of beta-galactoside alpha-2, 6-sialyltransferase in rat fibroblast (FR3T3) cells. Glycobiology 2(1):49–56
CrossRef
Google scholar
|
[63] |
Lee YC, Kojima N, Wada E, Kurosawa N, Nakaoka T, Hamamoto T, Tsuji S (1994) Cloning and expression of cDNA for a new type of Gal beta 1,3GalNAc alpha 2,3-sialyltransferase. J Biol Chem 269 (13):10028–10033
|
[64] |
Li RH, Liang JL, Ni S, Zhou T, Qing XB, Li HP, He WZ, Chen JK, Li F, Zhuang QA
CrossRef
Google scholar
|
[65] |
Liang Y, Xu P, Zou Q, Luo H, Yu W (2018) An epigenetic perspective on tumorigenesis: loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2018.09.004
CrossRef
Google scholar
|
[66] |
Liu XP, Sun H, Qi J, Wang LL, He SW, Liu J, Feng CQ, Chen CL, Li W, Guo YQ
CrossRef
Google scholar
|
[67] |
Lowe JB (2 003) Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol 15(5):531–538
CrossRef
Google scholar
|
[68] |
Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856
CrossRef
Google scholar
|
[69] |
Macauley MS, Crocker PR, Paulson JC (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14(10):653–666
CrossRef
Google scholar
|
[70] |
Macbeth RALBJG (1962) Plasma glycoproteins in various disease states including carcinoma. Cancer Res 22(10):1170–1176
|
[71] |
Margolis RK, Margolis RU (1983) Distribution and characteristics of polysialosyl oligosaccharides in nervous tissue glycoproteins. Biochem Biophys Res Commun 116(3):889–894
CrossRef
Google scholar
|
[72] |
Melo-Braga MN, Schulz M, Liu QY, Swistowski A, Palmisano G, Engholm-Keller K, Jakobsen L, Zeng XM, Larsen MR (2014)Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol Cell Proteomics 13(1):311–328
CrossRef
Google scholar
|
[73] |
Mincarelli L, Lister A, Lipscombe J, Macaulay IC (2018) Defining cell identity with single-cell omics. Proteomics 18(18):e1700312
CrossRef
Google scholar
|
[74] |
Miyagi T, Takahashi K, Hata K, Shiozaki K, Yamaguchi K (2012) Sialidase significance for cancer progression. Glycoconj J 29(8–9):567–577
CrossRef
Google scholar
|
[75] |
Moris N, Pina C, Arias AM (2016) Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet 17(11):693–703
CrossRef
Google scholar
|
[76] |
Moyer VA, Force USPST (2012) Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 157(2):120–134
CrossRef
Google scholar
|
[77] |
Muhlenhoff M, Rollenhagen M, Werneburg S, Gerardy-Schahn R, Hildebrandt H (2013) Polysialic acid: versatile modification of NCAM, SynCAM 1 and neuropilin-2. Neurochem Res 38(6):1134–1143
CrossRef
Google scholar
|
[78] |
Nakagoe T, Sawai T, Tsuji T, Jibiki M, Nanashima A, Yamaguchi H, Kurosaki N, Yasutake T, Ayabe H (2001) Circulating sialyl Lewis (x), sialyl Lewis(a), and sialyl Tn antigens in colorectal cancer patients: multivariate analysis of predictive factors for serum antigen levels. J Gastroenterol 36(3):166–172
CrossRef
Google scholar
|
[79] |
Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR (2003) Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and-independent mechanisms. Eur J Immunol 33(6):1642–1648
CrossRef
Google scholar
|
[80] |
Nomura H, Tamada Y, Miyagi T, Suzuki A, Taira M, Suzuki N, Susumu N, Irimura T, Aoki D (2006) Expression of NEU3 (plasma membrane-associated sialidase) in clear cell adenocarcinoma of the ovary: its relationship with T factor of pTNM classification. Oncol Res 16(6):289–297
CrossRef
Google scholar
|
[81] |
O’Reilly MK, Paulson JC (2009) Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci 30(5):240–248
CrossRef
Google scholar
|
[82] |
Okajima T, Fukumoto S,Miyazaki H, Ishida H, Kiso M, Furukawa K, Urano T, Furukawa K (1999) Molecular cloning of a novel alpha 2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids. J Biol Chem 274(17):11479–11486
CrossRef
Google scholar
|
[83] |
Okajima T, Chen HH, Ito H, Kiso M, Tai T, Furukawa K, Urano T, Furukawa K (2000) Molecular cloning and expression of mouse GD1alpha/GT1aalpha/GQ1balpha synthase (ST6GalNAc VI) gene. J Biol Chem 275(10):6717–6723
CrossRef
Google scholar
|
[84] |
Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K
CrossRef
Google scholar
|
[85] |
Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J (2016) Aberrant sialylation of a prostate-specific antigen: Electrochemical labelfree glycoprofiling in prostate cancer serum samples. Anal Chim Acta 934:72–79
CrossRef
Google scholar
|
[86] |
Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555
CrossRef
Google scholar
|
[87] |
Pucic M, Knezevic A, Vidic J, Adamczyk B, Novokmet M, Polasek O, Gornik O, Supraha-Goreta S, Wormald MR, Redzic I
CrossRef
Google scholar
|
[88] |
Raval GN, Patel DD, Parekh LJ, Patel JB, Shah MH, Patel PS (2003) Evaluation of serum sialic acid, sialyltransferase and sialoproteins in oral cavity cancer. Oral Dis 9(3):119–128
CrossRef
Google scholar
|
[89] |
Roseman S, Jourdian GW, Watson D, Rood R (1961) Enzymatic synthesis of sialic acid 9-phosphates. Proc Natl Acad Sci USA 47:958–961
CrossRef
Google scholar
|
[90] |
Saito S, Onuma Y, Ito Y, Tateno H, Toyoda M, Hidenori A, Nishino K, Chikazawa E, Fukawatase Y, Miyagawa Y
CrossRef
Google scholar
|
[91] |
Sakuma K, Aoki M, Kannagi R (2012) Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc Natl Acad Sci USA 109(20):7776–7781
CrossRef
Google scholar
|
[92] |
Saldova R, Wormald MR, Dwek RA, Rudd PM (2008) Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers 25(4–5):219–232
CrossRef
Google scholar
|
[93] |
Santos-Silva F, Fonseca A, Caffrey T, Carvalho F, Mesquita P, Reis C, Almeida R, David L, Hollingsworth MA (2005) Thomsen-Friedenreich antigen expression in gastric carcinomas is associated with MUC1 mucin VNTR polymorphism. Glycobiology 15(5):511–517
CrossRef
Google scholar
|
[94] |
Sasaki K, Watanabe E, Kawashima K, Sekine S, Dohi T, Oshima M, Hanai N, Nishi T, Hasegawa M (1993) Expression cloning of a novel Gal beta (1-3/1-4) GlcNAc alpha 2,3-sialyltransferase using lectin resistance selection. J Biol Chem 268(30):22782–22787
|
[95] |
Sato C, Kitajima K (2013) Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J Biochem 154(2):115–136
CrossRef
Google scholar
|
[96] |
Sawhney H, Kumar CA (2011) Correlation of serum biomarkers (TSA & LSA) and epithelial dysplasia in early diagnosis of oral precancer and oral cancer. Cancer Biomark 10(1):43–49
CrossRef
Google scholar
|
[97] |
Schroeder FH, Hugosson J, Roobol MJ, Tammela TLJ, Ciatto S, Nelen V, Kwiatkowski M, Lujan M, Lilja H, Zappa M
CrossRef
Google scholar
|
[98] |
Schultz MJ, Holdbrooks AT, Chakraborty A, Grizzle WE, Landen CN, Buchsbaum DJ, Conner MG, Arend RC, Yoon KJ, Klug CA
CrossRef
Google scholar
|
[99] |
Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W, Horstkorte R (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 99(8):5267–5270
CrossRef
Google scholar
|
[100] |
Seales EC, Jurado GA, Singhal A, Bellis SL (2003) Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene 22(46):7137–7145
CrossRef
Google scholar
|
[101] |
Seales EC, Shaikh FM, Woodard-Grice AV, Aggarwal P, McBrayer AC, Hennessy KM, Bellis SL (2005) A protein kinase C/Ras/ERK signaling pathway activates myeloid fibronectin receptors by altering beta1 integrin sialylation. J Biol Chem 280(45):37610–37615
CrossRef
Google scholar
|
[102] |
Shah MH, Telang SD, Shah PM, Patel PS (2008) Tissue and serum alpha 2-3- and alpha 2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconj J 25(3):279–290
CrossRef
Google scholar
|
[103] |
Stojkovic Lalosevic M, Stankovic S, Stojkovic M, Markovic V, Dimitrijevic I, Lalosevic J, Petrovic J, Brankovic M, Pavlovic Markovic A, Krivokapic Z (2017) Can preoperative CEA and CA19-9 serum concentrations suggest metastatic disease in colorectal cancer patients? Hell J Nucl Med 20(1):41–45
|
[104] |
Suzuki O, Abe M, Hashimoto Y (2015) Sialylation by betagalactoside alpha-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma. Int J Oncol 46(3):973–980
CrossRef
Google scholar
|
[105] |
Svennerholm L, Bostrom K, Fredman P, Mansson JE, Rosengren B, Rynmark BM (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta 1005(2):109–117
CrossRef
Google scholar
|
[106] |
Swindall AF, Bellis SL (2011) Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 286(26):22982–22990
CrossRef
Google scholar
|
[107] |
Tajiri M, Ohyama C, Wada Y (2008) Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in seminal plasma: a glycopeptide approach. Glycobiology 18(1):2–8
CrossRef
Google scholar
|
[108] |
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676
CrossRef
Google scholar
|
[109] |
Takashima S, Tachida Y, Nakagawa T, Hamamoto T, Tsuji S (1999) Quantitative analysis of expression of mouse sialyltransferase genes by competitive PCR. Biochem Biophys Res Commun 260(1):23–27
CrossRef
Google scholar
|
[110] |
Takashima S, Ishida HK, Inazu T, Ando T, Ishida H, Kiso M, Tsuji S, Tsujimoto M (2002) Molecular cloning and expression of a sixth type of alpha 2,8-sialyltransferase (ST8Sia VI) that sialylates O-glycans. J Biol Chem 277(27):24030–24038
CrossRef
Google scholar
|
[111] |
Theodoratou E, Thaci K, Agakov F, Timofeeva MN, Stambuk J, Pucic-Bakovic M, Vuckovic F, Orchard P, Agakova A, Din FV
CrossRef
Google scholar
|
[112] |
Uckun FM, Goodman P, Ma H, Dibirdik I, Qazi S (2010) CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc Natl Acad Sci USA 107(39):16852–16857
CrossRef
Google scholar
|
[113] |
van Karnebeek CDM, Bonafe L, Wen XY, Tarailo-Graovac M, Balzano S, Royer-Bertrand B, Ashikov A, Garavelli L, Mammi I, Turolla L
CrossRef
Google scholar
|
[114] |
Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360
CrossRef
Google scholar
|
[115] |
Vuckovic F, Theodoratou E, Thaci K, Timofeeva M, Vojta A, Stambuk J, Pucic-Bakovic M, Rudd PM, Derek L, Servis D
CrossRef
Google scholar
|
[116] |
Wang B (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu Rev Nutr 29:177–222
CrossRef
Google scholar
|
[117] |
Wang B (2012) Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Advances in Nutrition 3(3):465s–472s
CrossRef
Google scholar
|
[118] |
Wang B, Brand-Miller J, McVeagh P, Petocz P (2001) Concentration and distribution of sialic acid in human milk and infant formulas. Am J Clin Nutr 74(4):510–515
CrossRef
Google scholar
|
[119] |
Wang B, McVeagh P, Petocz P, Brand-Miller J (2003) Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am J Clin Nutr 78(5):1024–1029
CrossRef
Google scholar
|
[120] |
Wang YC, Peterson SE, Loring JF (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24(2):143–160
CrossRef
Google scholar
|
[121] |
Wang YC, Stein JW, Lynch CL, Tran HT, Lee CY, Coleman R, Hatch A, Antontsev VG, Chy HS, O’Brien CM
CrossRef
Google scholar
|
[122] |
Weber KS, Alon R, Klickstein LB (2004) Sialylation of ICAM-2 on platelets impairs adhesion of leukocytes via LFA-1 and DC-SIGN. Inflammation 28(4):177–188
CrossRef
Google scholar
|
[123] |
Werneburg S, Buettner FF, Erben L, Mathews M, Neumann H, Muhlenhoff M, Hildebrandt H (2016) Polysialylation and lipopolysaccharide-induced shedding of E-selectin ligand-1 and neuropilin-2 by microglia and THP-1 macrophages. Glia 64(8):1314–1330
CrossRef
Google scholar
|
[124] |
Yabe U, Sato C, Matsuda T, Kitajima K (2003) Polysialic acid in human milk—CD36 is a new member of mammalian polysialic acid-containing glycoprotein. J Biol Chem 278(16):13875–13880
CrossRef
Google scholar
|
[125] |
Yang X, Qian K (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18(7):452–465
CrossRef
Google scholar
|
[126] |
Yang PMD, Rutishauser U (1994) Role of charge and hydration in effects of polysialic acid on molecular interactions on and between cell membranes. J Biol Chem 269(37):23039–23044
|
[127] |
Yoneyama T, Ohyama C, Hatakeyama S, Narita S, Habuchi T, Koie T, Mori K, Hidari KIPJ, Yamaguchi M, Suzuki T
CrossRef
Google scholar
|
[128] |
Yoshida Y, Kojima N, Tsuji S (1995) Molecular cloning and characterization of a third type of N-glycan alpha 2,8-sialyltransferase from mouse lung. J Biochem 118(3):658–664
CrossRef
Google scholar
|
[129] |
Zhang D, Chen BC, Wang YM, Xia P, He CY, Liu YJ, Zhang RQ, Zhang M, Li ZL (2016) Disease-specific IgG Fc N-glycosylation as personalized biomarkers to differentiate gastric cancer from benign gastric diseases. Sci Rep 6:25957
CrossRef
Google scholar
|
[130] |
Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: Application to pancreatic cancer serum. J Proteome Res 5(7):1792–1802
CrossRef
Google scholar
|
[131] |
Zhao ZA, Yu Y, Ma HX, Wang XX, Lu X, Zhai Y, Zhang X, Wang H, Li L (2015) The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biol 5(8):150092
CrossRef
Google scholar
|
[132] |
Zhao T, Fu Y, Zhu J, Liu Y, Zhang Q, Yi Z, Chen S, Jiao Z, Xu X, Xu J
CrossRef
Google scholar
|
[133] |
Zhou Q, Melton DA (2008) Extreme makeover: converting one cell into another. Cell Stem Cell 3(4):382–388
CrossRef
Google scholar
|
/
〈 | 〉 |