Tongue coating microbiome as a potential biomarker for gastritis including precancerous cascade

Jiaxing Cui, Hongfei Cui, Mingran Yang, Shiyu Du, Junfeng Li, Yingxue Li, Liyang Liu, Xuegong Zhang, Shao Li

PDF(2180 KB)
PDF(2180 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (7) : 496-509. DOI: 10.1007/s13238-018-0596-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Tongue coating microbiome as a potential biomarker for gastritis including precancerous cascade

Author information +
History +

Abstract

The development of gastritis is associated with an increased risk of gastric cancer. Current invasive gastritis diagnostic methods are not suitable for monitoring progress. In this work based on 78 gastritis patients and 50 healthy individuals, we observed that the variation of tongue-coating microbiota was associated with the occurrence and development of gastritis. Twenty-one microbial species were identified for differentiating tongue-coating microbiomes of gastritis and healthy individuals. Pathways such as microbial metabolism in diverse environments, biosynthesis of antibiotics and bacterial chemotaxis were up-regulated in gastritis patients. The abundance of Campylobacter concisus was found associated with the gastric precancerous cascade. Furthermore, Campylobacter concisus could be detected in tongue coating and gastric fluid in a validation cohort containing 38 gastritis patients. These observations provided biological evidence of tongue diagnosis in traditional Chinese medicine, and indicated that tongue-coating microbiome could be a potential non-invasive biomarker, which might be suitable for long-term monitoring of gastritis.

Keywords

gastritis / tongue coating / metagenomics / Campylobacter concisus / non-invasive biomarker

Cite this article

Download citation ▾
Jiaxing Cui, Hongfei Cui, Mingran Yang, Shiyu Du, Junfeng Li, Yingxue Li, Liyang Liu, Xuegong Zhang, Shao Li. Tongue coating microbiome as a potential biomarker for gastritis including precancerous cascade. Protein Cell, 2019, 10(7): 496‒509 https://doi.org/10.1007/s13238-018-0596-6

References

[1]
Allos BM (2001) Campylobacter jejuniInfections: update on emerging issues and trends. Clin Infect Dis 32:1201–1206
CrossRef Google scholar
[2]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
CrossRef Google scholar
[3]
Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J (2014) Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep 4:4202
CrossRef Google scholar
[4]
Carl Nathan AD (2010) Nonresolving inflammation. Cell. 19:871–882
CrossRef Google scholar
[5]
Coker OO, Dai Z, Nie Y, Zhao G,Cao L, Nakatsu G, Wu WK, Wong SH, Chen Z, Sung JJY (2017) Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut:2017–314281
CrossRef Google scholar
[6]
Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process—1st American-cancer-society award lecture on cancer-epidemiology and prevention. Cancer Res 52:6735–6740
[7]
Correa P, Piazuelo MB (2012) The gastric precancerous cascade. J Digest Dis 13:2–9
CrossRef Google scholar
[8]
Coussens LM, Werb Z (2002) Inflammation and cancer. Nature. 420:860
CrossRef Google scholar
[9]
Deshpande NP, Wilkins MR, Castaño-Rodríguez N, Bainbridge E, Sodhi N,Riordan SM, Mitchell HM, Kaakoush NO (2016)Campylobacter concisuspathotypes induce distinct global responses in intestinal epithelial cells. Sci Rep 6:34288
CrossRef Google scholar
[10]
Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis: The updated sydney system. Am J Surg Pathol 20:1161–1181
CrossRef Google scholar
[11]
Engberg J, Bang DD, Aabenhus R, Aarestrup FM, Fussing V, Gerner-Smidt P (2005) Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics. Clin Microbiol Infect 11:288–295
CrossRef Google scholar
[12]
Eun CS, Kim BK, Han DS, Kim SY, Kim KM, Choi BY, Song KS, Kim YS, Kim JF (2014) Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter 19:407–416
CrossRef Google scholar
[13]
Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DTW (2012) Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61:582–588
CrossRef Google scholar
[14]
Feng P, Jyotaki M, Kim A, Chai J, Simon N, Zhou M, Bachmanov AA, Huang L, Wang H (2015) Regulation of bitter taste responses by tumor necrosis factor. Brain Behav Immunol 49:32–42
CrossRef Google scholar
[15]
Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC, Figueiredo C (2017). Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut:2017–314205
CrossRef Google scholar
[16]
Filipe MI, Munoz N, Matko I, Kato I, Pompe-Kirn V, Jutersek A, Teuchmann S, Benz M, Prijon T (1994) Intestinal metaplasia types and the risk of gastric cancer: a cohort study in Slovenia. Int J Cancer 57:324–329
CrossRef Google scholar
[17]
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152
CrossRef Google scholar
[18]
Genta RM, Sonnenberg A (2015) Helicobacter-negative gastritis: a distinct entity unrelated to Helicobacter pyloriinfection. Aliment Pharmacol Ther 41:218–226
CrossRef Google scholar
[19]
Guo Y, Nie Q, MacLean AL, Li Y, Lei J, Li S (2017) Multiscale modeling of inflammation-induced tumorigenesis reveals competing oncogenic and oncoprotective roles for inflammation. Cancer Res 77:6429–6441
CrossRef Google scholar
[20]
Hakalehto E, Vilpponen-Salmela T, Kinnunen K, von Wright A (2011) Lactic acid bacteria enriched from human gastric biopsies. ISRN Gastroenterol 2011:1–4
CrossRef Google scholar
[21]
Hinode D, Yoshioka M, Tanabe S, Miki O, Masuda K, Nakamura R (1998) The GroEL-like protein from Campylobacter rectus: immunological characterization and interleukin-6 and-8 induction in human gingival fibroblast. FEMS Microbiol Lett 167:1–6
CrossRef Google scholar
[22]
Horiuchi Y, Fujisaki J, Yamamoto N, Shimizu T, Miyamoto Y, Tomida H, Taniguchi C, Morishige K, Omae M, Ishiyama A (2016) Biological behavior of the intramucosal Helicobacter pylorinegativeundifferentiated-type early gastric cancer: comparison with Helicobacter pylori-positive early gastric cancer. Gastric Cancer 19:160–165
CrossRef Google scholar
[23]
Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386
CrossRef Google scholar
[24]
Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214
CrossRef Google scholar
[25]
Jiang B, Liang X, Chen Y, Ma T,Liu L, Li J, Jiang R, Chen T, Zhang X, Li S (2012) Integrating next-generation sequencing and traditional tongue diagnosis to determine tongue coating microbiome. Sci Rep 2:936
CrossRef Google scholar
[26]
Jonkers D, Gisbertz I, de Bruine A, Bot F,Arends JW, Stobberingh E, Schouten H, Stockbrugger R (1997) Helicobacter pylori and non-Helicobacter pylori bacterial flora in gastric mucosal and tumour specimens of patients with primary gastric lymphoma. Eur J Clin Invest 27:885–892
CrossRef Google scholar
[27]
Kaakoush NO, Mitchell HM (2012) Campylobacter concisus: a new player in intestinal disease. Front Cell Infect MI:2
CrossRef Google scholar
[28]
Kaakoush NO, Deshpande NP, Wilkins MR, Tan CG, Burgos-Portugal JA, Raftery MJ, Day AS, Lemberg DA, Mitchell H (2011) The pathogenic potential of Campylobacter concisusstrains associated with chronic intestinal diseases. PLoS ONE 6:e29045
CrossRef Google scholar
[29]
Kaakoush NO, Mitchell HM, Man SM (2014) Role of emerging campylobacter species in inflammatory bowel diseases. Inflamm Bowel Dis 20:2189–2197
CrossRef Google scholar
[30]
Kaakoush NO, Deshpande NP, Man SM, Burgos-Portugal JA, Khattak FA, Raftery MJ, Wilkins MR, Mitchell HM (2015) Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus. Infect Immunol 83:832–845
CrossRef Google scholar
[31]
Kanawong R, Obafemi-Ajayi T, Ma T, Xu D, Li S,Duan Y (2012) Automated tongue feature extraction for ZHENG classification in traditional chinese medicine. Evid-Based Complement Altern 2012:1–14
CrossRef Google scholar
[32]
Kesselring R, Glaesner J, Hiergeist A, Naschberger E, Neumann H, Brunner SM, Wege AK, Seebauer C, Köhl G, Merkl S (2016) IRAK-M expression in tumor cells supports colorectal cancer progression through reduction of antimicrobial defense and stabilization of STAT3. Cancer Cell 29:684–696
CrossRef Google scholar
[33]
Kovach Z, Kaakoush NO, Lamb S, Zhang L, Raftery MJ, Mitchell H (2011) Immunoreactive proteins of Campylobacter concisus, an emergent intestinal pathogen. FEMS Immunol Med Microbiol 63:387–396
CrossRef Google scholar
[34]
Kultima JR, Sunagawa S, Li J, Chen W, Chen H, Mende DR, Arumugam M, Pan Q, Liu B, Qin J (2012) MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS ONE 7:e47656
CrossRef Google scholar
[35]
Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659
CrossRef Google scholar
[36]
Li S, Zhang ZQ, Wu LJ, Zhang XG, Li YD, Wang YY (2007) Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol 1:51–60
CrossRef Google scholar
[37]
Li X, Wong GL, To K, Wong VW, Lai LH, Chow DK, Lau JY, Sung JJ, Ding C (2009) Bacterial microbiota profiling in gastritis without Helicobacter pyloriinfection or non-steroidal anti-inflammatory drug use. PLoS ONE 4:e7985
CrossRef Google scholar
[38]
Li R, Ma T, Gu J, Liang X, Li S (2013) Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients. Sci Rep 3:1543
CrossRef Google scholar
[39]
Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841
CrossRef Google scholar
[40]
Liang X, Li H, Tian G, Li S (2014) Dynamic microbe and molecule networks in a mouse model of colitis-associated colorectal cancer. Sci Rep 4:4985
CrossRef Google scholar
[41]
Macfarlane S, Furrie E, Macfarlane GT, Dillon JF (2007) Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin Infect Dis 45:29–38
CrossRef Google scholar
[42]
Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8:669–685
CrossRef Google scholar
[43]
Man SM, Kaakoush NO, Leach ST, Nahidi L, Lu HK, Norman J, Day AS, Zhang L, Mitchell HM (2010a) Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisusand other non-Campylobacter jejuniCampylobacter Species. J Infect Dis 202:1855–1865
CrossRef Google scholar
[44]
Man SM, Zhang L, Day AS, Leach ST, Lemberg DA, Mitchell H (2010b) Campylobacter concisusand other Campylobacter species in children with newly diagnosed Crohnʼs disease. Inflamm Bowel Dis 16:1008–1016
CrossRef Google scholar
[45]
Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315
CrossRef Google scholar
[46]
McColl KE (2010) Clinical practice. Helicobacter pyloriinfection. Eur J Pediatr 362:1597–1604
CrossRef Google scholar
[47]
Meining A, Riedl B, Stolte M (2002) Features of gastritis predisposing to gastric adenoma and early gastric cancer. J Clin Pathol 55:770–773
CrossRef Google scholar
[48]
Miehlke S, Hackelsberger A, Meining A, Hatz R,Lehn N, Malfertheiner P, Stolte M, Bayerdorffer E (1998) Severe expression of corpus gastritis is characteristic in gastric cancer patients infected with Helicobacter pylori. Br J Cancer 78:263–266
CrossRef Google scholar
[49]
Mukhopadhya I, Thomson JM, Hansen R, Berry SH, El-Omar EM, Hold GL (2011) Detection of Campylobacter concisusand other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS ONE 6:e24190
CrossRef Google scholar
[50]
Newell DG (2005) Campylobacter concisus: an emerging pathogen? Eur J Gastroenterol Hepatol 17:1013–1014
CrossRef Google scholar
[51]
O Brien SJ (2017) The consequences of Campylobacter infection. Curr Opin Gastroen 33:14–20
CrossRef Google scholar
[52]
Ohata H, Kitauchi S, Yoshimura N, Mugitani K, Iwane M, Nakamura H, Yoshikawa A, Yanaoka K, Arii K, Tamai H (2004) Progression of chronic atrophic gastritis associated with Helicobacter pyloriinfection increases risk of gastric cancer. Int J Cancer 109:138–143
CrossRef Google scholar
[53]
Overby A, Murayama SY, Michimae H, Suzuki H, Suzuki M, Serizawa H, Tamura R, Nakamura S, Takahashi S, Nakamura M (2017) Prevalence of gastric non-Helicobacter pylori-Helicobacters in Japanese patients with gastric disease. Digestion 95:61–66
CrossRef Google scholar
[54]
Owen DA (2003) Gastritis and carditis. Mod Pathol 16:325–341
CrossRef Google scholar
[55]
Pogoriler J, Kamin D, Goldsmith JD (2015) Pediatric non-Helicobacter pyloriatrophic gastritis: a case series. Am J Surg Pathol 39:786–792
CrossRef Google scholar
[56]
Price AB (1991) The Sydney system: histological division. J Gastroenterol Hepatol 6:209–222
CrossRef Google scholar
[57]
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
CrossRef Google scholar
[58]
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60
CrossRef Google scholar
[59]
Rugge M, Meggio A, Pennelli G, Piscioli F, Giacomelli L, De Pretis G,Graham DY (2007) Gastritis staging in clinical practice: the OLGA staging system. Gut 56:631–636
CrossRef Google scholar
[60]
Sahay P, West AP, Birkenhead D, Hawkey PM (1995) Campylobacter jejuniin the stomach. J Med Microbiol 43:75–77
CrossRef Google scholar
[61]
Schulz C, Schütte K, Malfertheiner P (2016) Helicobacter pyloriand other gastric microbiota in gastroduodenal pathologies. Digest Dis 34:210–216
CrossRef Google scholar
[62]
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814
CrossRef Google scholar
[63]
Sipponen P,Kekki M, Haapakoski J, Ihamaki T, Siurala M (1985) Gastric cancer risk in chronic atrophic gastritis: statistical calculations of cross-sectional data. Int J Cancer 35:173–177
CrossRef Google scholar
[64]
Sjostedt S, Heimdahl A, Kager L, Nord CE (1985) Microbial colonization of the oropharynx, esophagus and stomach in patients with gastric diseases. Eur J Clin Microbiol 4:49–51
CrossRef Google scholar
[65]
Sohn SH, Kim N, Jo HJ, Kim J, Park JH, Nam RH, Seok YJ, Kim YR, Lee DH (2017) Analysis of gastric body microbiota by pyrosequencing: possible role of bacteria other than helicobacter pylori in the gastric carcinogenesis. J Cancer Prev 22:115–125
CrossRef Google scholar
[66]
Song H, Ekheden IG, Zheng Z, Ericsson J, Nyren O, Ye W(2015) Incidence of gastric cancer among patients with gastric precancerous lesions: observational cohort study in a low risk Western population. BMJ-Brit Med J 351:3867
CrossRef Google scholar
[67]
Stolte M, Meining A (2001) The updated Sydney system: classification and grading of gastritis as the basis of diagnosis and treatment. Can J Gastroenterol 15:591–598
CrossRef Google scholar
[68]
Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, Haruma K, Asaka M, Uemura N, Malfertheiner P (2015) Kyoto global consensus report on Helicobacter pylorigastritis. Gut 64:1353–1367
CrossRef Google scholar
[69]
Sun ZM, Zhao J, Qian P, Wang YQ, Zhang WF, Guo CR, Pang XY, Wang SC, Li FF, Li Q (2013) Metabolic markers and microecological characteristics of tongue coating in patients with chronic gastritis. BMC Complement Altern Med 13:227
CrossRef Google scholar
[70]
Suzuki H, Mori H (2015) Helicobacter pylori: Helicobacter pylori gastritis: a novel distinct disease entity. Nat Rev Gastroenterol Hepatol 12:556–557
CrossRef Google scholar
[71]
Tam C (2003) Campylobacter coli: an important foodborne pathogen. J Infect 47:28–32
CrossRef Google scholar
[72]
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP (2008) A core gut microbiome in obese and lean twins. Nature 457:480–484
CrossRef Google scholar
[73]
von Rosenvinge EC, Song Y, White JR, Maddox C, Blanchard T, Fricke WF (2013) Immune status, antibiotic medication and pH are associated with changes in the stomach fluid microbiota. ISME J 7:1354–1366
CrossRef Google scholar
[74]
Ye J, Cai X, Yang J, Sun X, Hu C, Xia J, Shen J, Su K, Yan H, Xu Y (2016) Bacillus as a potential diagnostic marker for yellow tongue coating.SCI REP-UK: 6
CrossRef Google scholar
[75]
Zhang L (2014) Campylobacter concisusand inflammatory bowel disease.World J Gastroenterol 20:1259
CrossRef Google scholar
[76]
Zhang L, Budiman V, Day AS, Mitchell H, Lemberg DA, Riordan SM, Grimm M, Leach ST, Ismail Y (2010) Isolation and detection of Campylobacter concisusfrom saliva of healthy individuals and patients with inflammatory bowel disease.J Clin Microbiol 48:2965–2967
CrossRef Google scholar
[77]
Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF (2018) The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies.Science 359:1366–1370
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s)
AI Summary AI Mindmap
PDF(2180 KB)

Accesses

Citations

Detail

Sections
Recommended

/