Reciprocal regulation between lunapark and atlastin facilitates ER three-way junction formation

Xin Zhou , Yu He , Xiaofang Huang , Yuting Guo , Dong Li , Junjie Hu

Protein Cell ›› 2019, Vol. 10 ›› Issue (7) : 510 -525.

PDF (12868KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (7) : 510 -525. DOI: 10.1007/s13238-018-0595-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Reciprocal regulation between lunapark and atlastin facilitates ER three-way junction formation

Author information +
History +
PDF (12868KB)

Abstract

Three-way junctions are characteristic structures of the tubular endoplasmic reticulum (ER) network. Junctions are formed through atlastin (ATL)-mediated membrane fusion and stabilized by lunapark (Lnp). However, how Lnp is preferentially enriched at three-way junctions remains elusive. Here, we showed that Lnp loses its junction localization when ATLs are deleted. Reintroduction of ATL1 R77A and ATL3, which have been shown to cluster at the junctions, but not wild-type ATL1, relocates Lnp to the junctions. Mutations in the Nmyristoylation site or hydrophobic residues in the coiled coil (CC1) of Lnp N-terminus (NT) cause mis-targeting of Lnp. Conversely, deletion of the lunapark motif in the C-terminal zinc finger domain, which affects the homooligomerization of Lnp, does not alter its localization. Purified Lnp-NT attaches to the membrane in a myristoylation-dependent manner. The mutation of hydrophobic residues in CC1 does not affect membrane association, but compromises ATL interactions. In addition, Lnp-NT inhibits ATL-mediated vesicle fusion in vitro. These results suggest that CC1 in Lnp-NT contacts junction-enriched ATLs for proper localization; subsequently, further ATL activity is limited by Lnp after the junction is formed. The proposed mechanism ensures coordinated actions of ATL and Lnp in generating and maintaining three-way junctions.

Keywords

endoplasmic reticulum / three-way junction / membrane fusion / lunapark / atlastin / amphipathic helix / myristoylation

Cite this article

Download citation ▾
Xin Zhou, Yu He, Xiaofang Huang, Yuting Guo, Dong Li, Junjie Hu. Reciprocal regulation between lunapark and atlastin facilitates ER three-way junction formation. Protein Cell, 2019, 10(7): 510-525 DOI:10.1007/s13238-018-0595-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anwar K, Klemm RW, Condon A, Severin KN, Zhang M, Ghirlando R, Hu J, Rapoport TA, Prinz WA (2012) The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae. J Cell Biol 197:209–217

[2]

Bennett PM (2012) From myofibril to membrane; the transitional junction at the intercalated disc. Front Biosci (Landmark Ed) 17:1035–1050

[3]

Bian X, Klemm RW, Liu TY, Zhang M, Sun S, Sui X, Liu X, Rapoport TA, Hu J (2011) Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Natl Acad Sci USA 108:3976–3981

[4]

Casey AK, Chen S, Novick P, Ferro-Novick S, Wente SR (2015) Nuclear pore complex integrity requires Lnp1, a regulator of cortical endoplasmic reticulum. Mol Biol Cell 26:2833–2844

[5]

Chen S, Cui Y, Parashar S, Novick PJ, Ferro-Novick S (2018) ERphagy requires Lnp1, a protein that stabilizes rearrangements of the ER network. Proc Natl Acad Sci USA 115:E6237–E6244

[6]

Chen S, Desai T, McNew JA, Gerard P, Novick PJ, Ferro-Novick S (2015) Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum. Proc Natl Acad Sci USA 112:418–423

[7]

Chen S, Novick P, Ferro-Novick S (2012) ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p. Nat Cell Biol 14:707–716

[8]

Chen S, Novick P, Ferro-Novick S (2013) ER structure and function. Curr Opin Cell Biol 25:428–433

[9]

Du Y, Ferro-Novick S, Novick P (2004) Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci 117:2871–2878

[10]

Faust JE, Desai T, Verma A, Ulengin I,Sun TL, Moss TJ, Betancourt-Solis MA, Huang HW, Lee T, McNew JA (2015) The Atlastin C-terminal tail is an amphipathic helix that perturbs the bilayer structure during endoplasmic reticulum homotypic fusion. J Biol Chem 290:4772–4783

[11]

Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190:363–375

[12]

Grigoriev I, Gouveia SM, van der Vaart B, Demmers J, Smyth JT, Honnappa S, Splinter D, Steinmetz MO, Putney JW Jr, Hoogenraad CC (2008) STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol 18:177–182

[13]

Hu J, Shibata Y, Voss C, Shemesh T, Li Z, Coughlin M, Kozlov MM, Rapoport TA, Prinz WA (2008) Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319:1247–1250

[14]

Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C (2009) A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138:549–561

[15]

Hu X, Wu F, Sun S, Yu W, Hu J (2015) Human atlastin GTPases mediate differentiated fusion of endoplasmic reticulum membranes. Protein Cell 6:307–311

[16]

Krahmer N, Hilger M, Kory N, Wilfling F, Stoehr G, Mann M, Farese RV Jr, Walther TC (2013) Protein correlation profiles identify lipid droplet proteins with high confidence. Mol Cell Proteomics 12:1115–1126

[17]

Kriechbaumer V, Breeze E, Pain C, Tolmie F, Frigerio L, Hawes C (2018) Arabidopsis Lunapark proteins are involved in ER cisternae formation. New Phytol 219:990–1004

[18]

Liu TY, Bian X, Sun S, Hu X, Klemm RW, Prinz WA, Rapoport TA, Hu J (2012) Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc Natl Acad Sci USA 109: E2146–2154

[19]

McGourty CA, Akopian D, Walsh C, Gorur A, Werner A, Schekman R, Bautista D, Rape M (2016) Regulation of the CUL3 ubiquitin ligase by a calcium-dependent co-adaptor. Cell 167(525–538): e514

[20]

Moriya K, Nagatoshi K, Noriyasu Y,Okamura T, Takamitsu E, Suzuki T, Utsumi T (2013) Protein N-myristoylation plays a critical role in the endoplasmic reticulum morphological change induced by overexpression of protein Lunapark, an integral membrane protein of the endoplasmic reticulum. PLoS ONE 8:e78235

[21]

Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu CS, Pasolli HA, Harvey K, Hess HF, Betzig E (2016) Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354:aaf3928

[22]

Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, Micaroni M, Egorova A, Martinuzzi A, McNew JA (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460:978–983

[23]

Powers RE, Wang S, Liu TY, Rapoport TA (2017) Reconstitution of the tubular endoplasmic reticulum network with purified components. Nature 543:257–260

[24]

Rismanchi N, Soderblom C, Stadler J, Zhu PP, Blackstone C (2008) Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Genet 17:1591–1604

[25]

Shemesh T, Klemm RW, Romano FB, Wang S, Vaughan J, Zhuang X, Tukachinsky H, Kozlov MM, Rapoport TA (2014) A model for the generation and interconversion of ER morphologies. Proc Natl Acad Sci USA 111:E5243–5251

[26]

Shibata Y, Hu J, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25:329–354

[27]

Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126:435–439

[28]

Shibata Y, Voss C, Rist JM, Hu J, Rapoport TA, Prinz WA, Voeltz GK (2008) The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J Biol Chem 283:18892–18904

[29]

Sun S, Lv L, Yao Z, Bhanot P, Hu J,Wang Q (2016) Identification of endoplasmic reticulum-shaping proteins in Plasmodium parasites. Protein Cell 7:615–620

[30]

Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124:573–586

[31]

Wang S, Powers RE, Gold VA, Rapoport TA (2018) The ER morphology-regulating lunapark protein induces the formation of stacked bilayer discs. Life Sci Alliance 1:e201700014

[32]

Wang S, Romano FB, Field CM, Mitchison TJ, Rapoport TA (2013) Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts. J Cell Biol 203:801–814

[33]

Wang S, Tukachinsky H, Romano FB, Rapoport TA (2016) Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. Elife 5: e18605

[34]

Wang X, Li S, Wang H, Shui W, Hu J (2017) Quantitative proteomics reveal proteins enriched in tubular endoplasmic reticulum of Saccharomyces cerevisiae. Elife 6:e23816

[35]

Wozniak MJ, Bola B, Brownhill K, Yang YC, Levakova V, Allan VJ (2009) Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells. J Cell Sci 122:1979–1989

[36]

Wu F, Hu X, Bian X, Liu X, Hu J (2015) Comparison of human and Drosophila atlastin GTPases. Protein Cell 6:139–146

[37]

Yan L, Sun S, Wang W, Shi J, Hu X, Wang S, Su D, Rao Z, Hu J, Lou Z (2015) Structures of the yeast dynamin-like GTPase Sey1p provide insight into homotypic ER fusion. J Cell Biol 210:961–972

[38]

Zhang H, Hu J (2016) Shaping the endoplasmic reticulum into a social network. Trends Cell Biol 26:934–943

[39]

Zhang M, Wu F, Shi J, Zhu Y, Zhu Z, Gong Q, Hu J (2013) ROOT HAIR DEFECTIVE3 family of dynamin-like GTPases mediates homotypic endoplasmic reticulum fusion and is essential for Arabidopsis development. Plant Physiol 163:713–720

[40]

Zhao Y, Zhang T, Huo H, Ye Y, Liu Y (2016) Lunapark is a component of a ubiquitin ligase complex localized to the endoplasmic reticulum three-way junctions. j biol chem 291:18252–18262

[41]

Zhu PP, Patterson A, Lavoie B, Stadler J, Shoeb M, Patel R, Blackstone C (2003) Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem 278:49063–49071

[42]

Zhu Y,Zhang G, Lin S, Shi J, Zhang H, Hu J (2018) Sec61β facilitates the maintenance of endoplasmic reticulum homeostasis by associating microtubules. Protein Cell 9:616–628

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (12868KB)

Supplementary files

PAC-0510-18436-HJJ_suppl_1

691

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/