Human germline editing: Insights to future clinical treatment of diseases

Yanni Li, Xiang Jin Kang, Jeremy Kah Sheng Pang, Boon Seng Soh, Yang Yu, Yong Fan

PDF(752 KB)
PDF(752 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (7) : 470-475. DOI: 10.1007/s13238-018-0594-8
COMMENTARY
COMMENTARY

Human germline editing: Insights to future clinical treatment of diseases

Author information +
History +

Cite this article

Download citation ▾
Yanni Li, Xiang Jin Kang, Jeremy Kah Sheng Pang, Boon Seng Soh, Yang Yu, Yong Fan. Human germline editing: Insights to future clinical treatment of diseases. Protein Cell, 2019, 10(7): 470‒475 https://doi.org/10.1007/s13238-018-0594-8

References

[1]
Abou-El-Enein M, Cathomen T, Ivics Z, June CH, Renner M, Schneider CK, Bauer G (2017) Human genome editing in the clinic: new challenges in regulatory benefit-risk assessment. Cell Stem Cell 21:427–430
CrossRef Google scholar
[2]
Abrahimi P, Chang WG, Kluger MS, Qyang Y, Tellides G, Saltzman WM, Pober JS (2015) Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9. Circ Res 117:121–128
CrossRef Google scholar
[3]
Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ, Beard MR, Hughes J, Pomerantz RT, Thomas PQ (2018) Large deletions induced by Cas9 cleavage. Nature 560:E8–E9
CrossRef Google scholar
[4]
Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W, Gale M, Xu Q, Yan Q (2016) An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44:e149
CrossRef Google scholar
[5]
Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510
CrossRef Google scholar
[6]
Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L (2017) CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci 60:520–523
CrossRef Google scholar
[7]
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (NY, NY) 339:819–823
CrossRef Google scholar
[8]
Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23:415–423
CrossRef Google scholar
[9]
Corrigan-Curay J, O’Reilly M, Kohn DB, Cannon PM, Bao G, Bushman FD, Carroll D, Cathomen T, Joung JK, Roth D (2015) Genome editing technologies: defining a path to clinic. Mol Ther J Am Soc Gene Ther 23:796–806
CrossRef Google scholar
[10]
Eggan K, Rode A, Jentsch I, Samuel C, Hennek T, Tintrup H, Zevnik B, Erwin J, Loring J, Jackson-Grusby L (2002) Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Biotechnol 20:455–459
CrossRef Google scholar
[11]
Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A, Jasin M (2018) Inter-homologue repair in fertilized human eggs? Nature 560:E5–E7
CrossRef Google scholar
[12]
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2018) Publisher Correction: programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 559:E8
CrossRef Google scholar
[13]
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24:927–930
CrossRef Google scholar
[14]
Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139
CrossRef Google scholar
[15]
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278
CrossRef Google scholar
[16]
Iyer V, Boroviak K, Thomas M, Doe B, Riva L, Ryder E, Adams DJ (2018) No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet 14: e1007503
CrossRef Google scholar
[17]
Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33:581–588
CrossRef Google scholar
[18]
Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS (2017a) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435–437
CrossRef Google scholar
[19]
Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR (2017b) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35:371–376
CrossRef Google scholar
[20]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
CrossRef Google scholar
[21]
Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, Kim YB, Badran AH, Liu DR (2017) Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 3:eaao4774
CrossRef Google scholar
[22]
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771
CrossRef Google scholar
[23]
Li G, Liu Y, Zeng Y, Li J, Wang L, Yang G, Chen D, Shang X, Chen J, Huang X (2017a) Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell 8:776–779
CrossRef Google scholar
[24]
Li L, Song L, Liu X, Yang X, Li X, He T, Wang N, Yang S, Yu C, Yin T (2017b) Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 11:95–111
CrossRef Google scholar
[25]
Li TD, Feng GH, Li YF, Wang M, Mao JJ, Wang JQ, Li X, Wang XP, Qu B, Wang LY (2017c) Rat embryonic stem cells produce fertile offspring through tetraploid complementation. Proc Natl Acad Sci USA 114:11974–11979
CrossRef Google scholar
[26]
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372
CrossRef Google scholar
[27]
Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y (2017a) Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8:811–822
CrossRef Google scholar
[28]
Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, Zhang Z, Chen Y, Ding C, Xiong Y (2017b) Effective gene editing by highfidelity base editor 2 in mouse zygotes. Protein Cell 8:601–611
CrossRef Google scholar
[29]
Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S (2014) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14:323–328
CrossRef Google scholar
[30]
Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525
CrossRef Google scholar
[31]
Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548:413–419
CrossRef Google scholar
[32]
Ma H, Marti-Gutierrez N, Park SW, Wu J, Hayama T, Darby H, Van Dyken C, Li Y, Koski A, Liang D (2018) Ma et al. reply. Nature 560:E10–E23
CrossRef Google scholar
[33]
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
CrossRef Google scholar
[34]
Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407
CrossRef Google scholar
[35]
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843
CrossRef Google scholar
[36]
Noel S, Lee SA, Sadasivam M, Hamad ARA, Rabb H (2018) KEAP1 editing using CRISPR/Cas9 for therapeutic NRF2 activation in primary human T lymphocytes. J Immunol 200:1929–1936
CrossRef Google scholar
[37]
Ormond KE, Mortlock DP, Scholes DT, Bombard Y, Brody LC, Faucett WA, Garrison NA, Hercher L, Isasi R, Middleton A (2017) Human germline genome editing. Am J Hum Genet 101:167–176
CrossRef Google scholar
[38]
Pei D, Beier DW, Levy-Lahad E, Marchant G, Rossant J, Izpisua Belmonte JC, Lovell-Badge R, Jaenisch R, Charo A, Baltimore D (2017) Human embryo editing: opportunities and importance of transnational cooperation. Cell Stem Cell 21:423–426
CrossRef Google scholar
[39]
Sato M, Koriyama M, Watanabe S, Ohtsuka M, Sakurai T, Inada E, Saitoh I, Nakamura S, Miyoshi K (2015) Direct injection of CRISPR/Cas9-related mRNA into cytoplasm of parthenogenetically activated porcine oocytes causes frequent mosaicism for Indel mutations. Int J Mol Sci 16:17838–17856
CrossRef Google scholar
[40]
Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. eLife. https://doi.org/10.7554/eLife.33761.001
CrossRef Google scholar
[41]
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658
CrossRef Google scholar
[42]
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG (2014) Genomescale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87
CrossRef Google scholar
[43]
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399–402
CrossRef Google scholar
[44]
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88
CrossRef Google scholar
[45]
Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 292:525–533
CrossRef Google scholar
[46]
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918
CrossRef Google scholar
[47]
Wilde JJ, Aida T, Wienisch M, Zhang Q, Qi P, Feng G (2018) RAD51 enhances zygotic interhomolog repair. bioRxiv. https://doi.org/10.1101/263699
CrossRef Google scholar
[48]
Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662
CrossRef Google scholar
[49]
Zeng Y, Li J, Li G, Huang S, Yu W, Zhang Y, Chen D, Chen J, Liu J, Huang X (2018) Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther J Am Soc Gene Ther. https://doi.org/10.1016/j.ymthe.2018.08.007
CrossRef Google scholar
[50]
Zhou C, Zhang M, Wei Y, Sun Y, Sun Y, Pan H, Yao N, Zhong W, Li Y, Li W (2017) Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8:772–775
CrossRef Google scholar
[51]
Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s) 2018
AI Summary AI Mindmap
PDF(752 KB)

Accesses

Citations

Detail

Sections
Recommended

/