Human germline editing: Insights to future clinical treatment of diseases
Yanni Li, Xiang Jin Kang, Jeremy Kah Sheng Pang, Boon Seng Soh, Yang Yu, Yong Fan
Human germline editing: Insights to future clinical treatment of diseases
[1] |
Abou-El-Enein M, Cathomen T, Ivics Z, June CH, Renner M, Schneider CK, Bauer G (2017) Human genome editing in the clinic: new challenges in regulatory benefit-risk assessment. Cell Stem Cell 21:427–430
CrossRef
Google scholar
|
[2] |
Abrahimi P, Chang WG, Kluger MS, Qyang Y, Tellides G, Saltzman WM, Pober JS (2015) Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9. Circ Res 117:121–128
CrossRef
Google scholar
|
[3] |
Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ, Beard MR, Hughes J, Pomerantz RT, Thomas PQ (2018) Large deletions induced by Cas9 cleavage. Nature 560:E8–E9
CrossRef
Google scholar
|
[4] |
Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W, Gale M, Xu Q, Yan Q (2016) An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44:e149
CrossRef
Google scholar
|
[5] |
Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510
CrossRef
Google scholar
|
[6] |
Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L (2017) CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci 60:520–523
CrossRef
Google scholar
|
[7] |
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA
CrossRef
Google scholar
|
[8] |
Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23:415–423
CrossRef
Google scholar
|
[9] |
Corrigan-Curay J, O’Reilly M, Kohn DB, Cannon PM, Bao G, Bushman FD, Carroll D, Cathomen T, Joung JK, Roth D
CrossRef
Google scholar
|
[10] |
Eggan K, Rode A, Jentsch I, Samuel C, Hennek T, Tintrup H, Zevnik B, Erwin J, Loring J, Jackson-Grusby L
CrossRef
Google scholar
|
[11] |
Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A, Jasin M (2018) Inter-homologue repair in fertilized human eggs? Nature 560:E5–E7
CrossRef
Google scholar
|
[12] |
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2018) Publisher Correction: programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 559:E8
CrossRef
Google scholar
|
[13] |
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24:927–930
CrossRef
Google scholar
|
[14] |
Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139
CrossRef
Google scholar
|
[15] |
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278
CrossRef
Google scholar
|
[16] |
Iyer V, Boroviak K, Thomas M, Doe B, Riva L, Ryder E, Adams DJ (2018) No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet 14: e1007503
CrossRef
Google scholar
|
[17] |
Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33:581–588
CrossRef
Google scholar
|
[18] |
Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS (2017a) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435–437
CrossRef
Google scholar
|
[19] |
Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR (2017b) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35:371–376
CrossRef
Google scholar
|
[20] |
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
CrossRef
Google scholar
|
[21] |
Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, Kim YB, Badran AH, Liu DR (2017) Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 3:eaao4774
CrossRef
Google scholar
|
[22] |
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771
CrossRef
Google scholar
|
[23] |
Li G, Liu Y, Zeng Y, Li J, Wang L, Yang G, Chen D, Shang X, Chen J, Huang X
CrossRef
Google scholar
|
[24] |
Li L, Song L, Liu X, Yang X, Li X, He T, Wang N, Yang S, Yu C, Yin T
CrossRef
Google scholar
|
[25] |
Li TD, Feng GH, Li YF, Wang M, Mao JJ, Wang JQ, Li X, Wang XP, Qu B, Wang LY
CrossRef
Google scholar
|
[26] |
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y
CrossRef
Google scholar
|
[27] |
Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y
CrossRef
Google scholar
|
[28] |
Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, Zhang Z, Chen Y, Ding C, Xiong Y
CrossRef
Google scholar
|
[29] |
Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S
CrossRef
Google scholar
|
[30] |
Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525
CrossRef
Google scholar
|
[31] |
Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R
CrossRef
Google scholar
|
[32] |
Ma H, Marti-Gutierrez N, Park SW, Wu J, Hayama T, Darby H, Van Dyken C, Li Y, Koski A, Liang D
CrossRef
Google scholar
|
[33] |
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
CrossRef
Google scholar
|
[34] |
Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX
CrossRef
Google scholar
|
[35] |
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W
CrossRef
Google scholar
|
[36] |
Noel S, Lee SA, Sadasivam M, Hamad ARA, Rabb H (2018) KEAP1 editing using CRISPR/Cas9 for therapeutic NRF2 activation in primary human T lymphocytes. J Immunol 200:1929–1936
CrossRef
Google scholar
|
[37] |
Ormond KE, Mortlock DP, Scholes DT, Bombard Y, Brody LC, Faucett WA, Garrison NA, Hercher L, Isasi R, Middleton A
CrossRef
Google scholar
|
[38] |
Pei D, Beier DW, Levy-Lahad E, Marchant G, Rossant J, Izpisua Belmonte JC, Lovell-Badge R, Jaenisch R, Charo A, Baltimore D (2017) Human embryo editing: opportunities and importance of transnational cooperation. Cell Stem Cell 21:423–426
CrossRef
Google scholar
|
[39] |
Sato M, Koriyama M, Watanabe S, Ohtsuka M, Sakurai T, Inada E, Saitoh I, Nakamura S, Miyoshi K (2015) Direct injection of CRISPR/Cas9-related mRNA into cytoplasm of parthenogenetically activated porcine oocytes causes frequent mosaicism for Indel mutations. Int J Mol Sci 16:17838–17856
CrossRef
Google scholar
|
[40] |
Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J
CrossRef
Google scholar
|
[41] |
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK
CrossRef
Google scholar
|
[42] |
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG
CrossRef
Google scholar
|
[43] |
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X
CrossRef
Google scholar
|
[44] |
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88
CrossRef
Google scholar
|
[45] |
Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X
CrossRef
Google scholar
|
[46] |
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918
CrossRef
Google scholar
|
[47] |
Wilde JJ, Aida T, Wienisch M, Zhang Q, Qi P, Feng G (2018) RAD51 enhances zygotic interhomolog repair. bioRxiv. https://doi.org/10.1101/263699
CrossRef
Google scholar
|
[48] |
Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662
CrossRef
Google scholar
|
[49] |
Zeng Y, Li J, Li G, Huang S, Yu W, Zhang Y, Chen D, Chen J, Liu J, Huang X (2018) Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther J Am Soc Gene Ther. https://doi.org/10.1016/j.ymthe.2018.08.007
CrossRef
Google scholar
|
[50] |
Zhou C, Zhang M, Wei Y, Sun Y, Sun Y, Pan H, Yao N, Zhong W, Li Y, Li W
CrossRef
Google scholar
|
[51] |
Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440
CrossRef
Google scholar
|
/
〈 | 〉 |