Pharmacomicrobiomics: a novel route towards personalized medicine?

Marwah Doestzada, Arnau Vich Vila, Alexandra Zhernakova, Debby P. Y. Koonen, Rinse K. Weersma, Daan J. Touw, Folkert Kuipers, Cisca Wijmenga, Jingyuan Fu

PDF(1269 KB)
PDF(1269 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (5) : 432-445. DOI: 10.1007/s13238-018-0547-2
REVIEW
REVIEW

Pharmacomicrobiomics: a novel route towards personalized medicine?

Author information +
History +

Abstract

Inter-individual heterogeneity in drug response is a serious problem that affects the patient’s wellbeing and poses enormous clinical and financial burdens on a societal level. Pharmacogenomics has been at the forefront of research into the impact of individual genetic background on drug response variability or drug toxicity, and recently the gut microbiome, which has also been called the second genome, has been recognized as an important player in this respect. Moreover, the microbiome is a very attractive target for improving drug efficacy and safety due to the opportunities to manipulate its composition. Pharmacomicrobiomics is an emerging field that investigates the interplay of microbiome variation and drugs response and disposition (absorption, distribution, metabolism and excretion). In this review, we provide a historical overview and examine current state-of-the-art knowledge on the complex interactions between gut microbiome, host and drugs. We argue that combining pharmacogenomics and pharmacomicrobiomics will provide an important foundation for making major advances in personalized medicine.

Keywords

gut microbiome / drug metabolism / personalized medicine

Cite this article

Download citation ▾
Marwah Doestzada, Arnau Vich Vila, Alexandra Zhernakova, Debby P. Y. Koonen, Rinse K. Weersma, Daan J. Touw, Folkert Kuipers, Cisca Wijmenga, Jingyuan Fu. Pharmacomicrobiomics: a novel route towards personalized medicine?. Protein Cell, 2018, 9(5): 432‒445 https://doi.org/10.1007/s13238-018-0547-2

References

[1]
Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 14:356–365
CrossRef Google scholar
[2]
Ananthakrishnan AN, Luo C, Yajnik V, Khalili H, Garber JJ, Stevens BW, Cleland T, Xavier RJ (2017) Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21:603.e3–610.e3
CrossRef Google scholar
[3]
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236
CrossRef Google scholar
[4]
Basit AW, Lacey LF (2001) Colonic metabolism of ranitidine: implications for its delivery and absorption. Int J Pharm 227:157–165
CrossRef Google scholar
[5]
Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL,Nehrenberg D , Hua K (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107:18933–18938
CrossRef Google scholar
[6]
Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772
CrossRef Google scholar
[7]
Boelsterli UA, Redinbo MR, Saitta KS (2013) Multiple NSAIDinduced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci 131:654–667
CrossRef Google scholar
[8]
Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M, Smeekens SP (2016) The effect of host genetics on the gut microbiome. Nat Genet 48:1407–1412
CrossRef Google scholar
[9]
Bouvy JC, De Bruin ML, Koopmanschap MA (2015) Epidemiology of adverse drug reactions in Europe: a review of recent observational studies. Drug Saf 38:437–453
CrossRef Google scholar
[10]
Campbell TC, Hayes JR (1976) The effect of quantity and quality of dietary protein on drug metabolism. Fed Proc 35:2470–2474
[11]
Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P (2008) Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 66:487–495
CrossRef Google scholar
[12]
Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L (2016) Akkermansia muciniphilaand improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436
CrossRef Google scholar
[13]
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563
CrossRef Google scholar
[14]
Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphilagen. nov., sp. nov., a human intestinal mucindegrading bacterium. Int J Syst Evol Microbiol 54:1469–1476
CrossRef Google scholar
[15]
Dial S, Alrasadi K, Manoukian C, Huang A, Menzies D (2004) Risk of Clostridium difficilediarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case–control studies. CMAJ 171:33–38
CrossRef Google scholar
[16]
European surveillance of Clostridium difficile infections.Surveillance protocol version 2.2 (2015) European Centre for Disease Prevention and Control. https://doi.org/10.2900/44795
[17]
Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Muccioli GM, Neyrinck AM, Possemiers S, Van Holle A, François P (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786
CrossRef Google scholar
[18]
Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071
CrossRef Google scholar
[19]
Falcony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D (2016) Population-level analysis of gut microbiome variation. Science 352:560–564
CrossRef Google scholar
[20]
Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266
CrossRef Google scholar
[21]
Francino MP (2016) Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol.https://doi.org/10.3389/fmicb.2015.01543
CrossRef Google scholar
[22]
Freedberg DE, Lebwohl B, Abrams JA (2014) The impact of proton pump inhibitors on the human gastrointestinal microbiome—clinical key. Clin Lab Med 34:771–785
CrossRef Google scholar
[23]
Freedberg DE, Toussaint NC, Chen SP, Ratner AJ, Whittier S, Wang TC, Wang HH, Abrams JA (2015) Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: a crossover trial. Gastroenterology 149:883–885
CrossRef Google scholar
[24]
Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, Brandsma E, Marczynska J, Imhann F, Weersma RK (2015) The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 117:817–824
CrossRef Google scholar
[25]
Fuller AT (1937) Is p-aminobenzenesulphonamide the active agent in protonsil therapy? Lancet (Lond) 229:194–198
CrossRef Google scholar
[26]
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT (2014) Human genetics shape the gut microbiome. Cell 159:789–799
CrossRef Google scholar
[27]
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE (2016) Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:731–743
CrossRef Google scholar
[28]
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC(2017) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 4236:1–15
[29]
Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–298
CrossRef Google scholar
[30]
Harris RZ, Jang GR, Tsunoda S (2003) Dietary effects on drug metabolism and transport. Clin Pharmacokinet 42:1071–1088
CrossRef Google scholar
[31]
Higuchi K, Umegaki E, Watanabe T, Yoda Y, Morita E, Murano M, Tokioka S, Arakawa T (2009) Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol 44:879–888
CrossRef Google scholar
[32]
Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754
CrossRef Google scholar
[33]
Huttenhower C, Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214
CrossRef Google scholar
[34]
Imhann F, Bonder MJ, Vila AV, Fu J, Mujagic Z, Vork L,Tigchelaar EF, Jankipersadsing SA, Cenit MC, Harmsen HJM (2016) Proton pump inhibitors affect the gut microbiome. Gut 65:740–748
CrossRef Google scholar
[35]
Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramírez J, Rudin CM (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388
CrossRef Google scholar
[36]
Jackson MA, Goodrich JK, Maxan M-E, Freedberg DE, Abrams JA, Poole AC, Sutter JL, Welter D, Ley RE, Bell JT (2016) Proton pump inhibitors alter the composition of the gut microbiota. Gut 65:749–756
CrossRef Google scholar
[37]
Jourova L, Anzenbacher P, Anzenbacherova E (2016) Human gut microbiota plays a role in the metabolism of drugs. Biomed Pap 160:317–326
CrossRef Google scholar
[38]
Kaddurah-Daouk R, Baillie RA, Zhu H, Zeng ZB, Wiest MM, Nguyen UT, Wojnoonski K, Watkins SM, Trupp M, Krauss RM (2011) Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS ONE. https://doi.org/10.1371/ journal.pone.0025482
CrossRef Google scholar
[39]
Kalow W, Tang B-K, Endrenyi L (1998) Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics 8:283–289
CrossRef Google scholar
[40]
Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsislike motions and flow. Lab Chip 12:2165
CrossRef Google scholar
[41]
Koppel N, Rekdal VM, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356:1246–1257
CrossRef Google scholar
[42]
Kumar K, Jaiswal SK, Dhoke GV, Srivastava GN, Sharma AK, Sharma VK (2017) Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme. J Cell Biochem. https://doi.org/10.1002/jcb. 26638
[43]
Kurilshikov A, Wijmenga C, Fu J, Zhernakova A(2017) Host genetics and gut microbiome: challenges and perspectives. Trends Immunol 38:633–647
CrossRef Google scholar
[44]
Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203
CrossRef Google scholar
[45]
Lindenbaum J, Rund DG, Butler VPJ, Tse-Eng D, Saha JR (1981) Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 305:789–794
CrossRef Google scholar
[46]
Madian AG, Wheeler HE, Jones RB, Dolan ME (2012) Relating human genetic variation to variation in drug responses. Trends Genet 28:487–495
CrossRef Google scholar
[47]
Markowitz JS, Donovan JL, DeVane CL, Taylor RM, Wort TJOHNS, Per HY, Ruan Y, Wang J-S, Chavin KD (2003) Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA 290:1500–1504
CrossRef Google scholar
[48]
Omenetti S, Pizarro TT (2015) The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol. https://doi.org/10.3389/fimmu.2015.00639
CrossRef Google scholar
[49]
Peppercorn MA, Goldman P (1972) The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther 181:555–562
[50]
Peters SA, Jones CR, Ungell AL, Hatley OJD (2016) Predicting drug extraction in the human gut wall: assessing contributions from drug metabolizing enzymes and transporter proteins using preclinical models. Clin Pharmacokinet 55:673–696
CrossRef Google scholar
[51]
Plovier H,Everard A , Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113
CrossRef Google scholar
[52]
Raju TN (1999) The nobel chronicles. Lancet 353:681
CrossRef Google scholar
[53]
Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64:2847–2858
CrossRef Google scholar
[54]
Rothschild D, Weissbrod O, Barkan E, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, Zmora N (2017) Environmental factors dominate over host genetics in shaping human gut microbiota composition. bioRxiv.https://doi.org/10.1101/150540
CrossRef Google scholar
[55]
Routy B, Le Chatelier E, Derosa L,Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C,Roberti MP (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97
CrossRef Google scholar
[56]
Saad R, Rizkallah MR, Aziz RK (2012) Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog 4:16
CrossRef Google scholar
[57]
Saha JR, Butler VP, Neu HC, Lindenbaum J (1983) Digoxininactivating bacteria: identification in human gut flora. Science 220:325–327
CrossRef Google scholar
[58]
Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Jansen T, Jacobs L, Bonder MJ, Kurilshikov A (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167:1125.e8–1136.e8
CrossRef Google scholar
[59]
Scholtens S, Smidt N, Swertz MA, Bakker SJL, Dotinga A, Vonk JM, Van Dijk F, Van Zon SKR, Wijmenga C, Wolffenbuttel BHR (2015) Cohort profile: LifeLines, a three-generation cohort study and biobank. Int J Epidemiol 44:1172–1180
CrossRef Google scholar
[60]
Sheehan NA, Didelez V, Burton PR, Tobin MD (2008) Mendelian randomisation and causal inference in observational epidemiology. PLoS Med 5:e177
CrossRef Google scholar
[61]
Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in dietinduced obese mice. Gut 63:727–735
CrossRef Google scholar
[62]
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre M-L (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089
CrossRef Google scholar
[63]
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573
CrossRef Google scholar
[64]
Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 14:273–287
CrossRef Google scholar
[65]
Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical application of pharmacogenetics. Trends Mol Med 7:201–204
CrossRef Google scholar
[66]
Sperry J, Wilkins T (1976) Arginine, a growth-limiting factor for Eubacterium lentum. J Bacteriol 127:780–784
[67]
Stefka AT, Feehley T, Tripathi P,Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo G-Y, Cao S, Theriault BR (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 111:13145–13150
CrossRef Google scholar
[68]
Stein A, Voigt W, Jordan K (2010) Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol 2:51–63
CrossRef Google scholar
[69]
Sudlow C, Gallacher J, Allen N, Beral V, Burton P,Danesh J, Downey P, Elliott P, Green J, Landray M (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med.https://doi.org/10.1371/journal.pmed.1001779
CrossRef Google scholar
[70]
Sultana J, Cutroneo P, Trifirò G (2013) Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother 4:S73–S77
CrossRef Google scholar
[71]
Sylvetsky AC, Edelstein SL, Walford G, Boyko EJ, Horton ES, Ibebuogu UN, Knowler WC, Montez MG, Temprosa M, Hoskin M (2017) A high-carbohydrate, high-fiber, low-fat diet results in weight loss among adults at high risk of type 2 diabetes. J Nutr.https://doi.org/10.3945/jn.117.252395
CrossRef Google scholar
[72]
Takayama K, Inamura M, Kawabata K, Katayama K, Higuchi M, Tashiro K, Nonaka A, Sakurai F, Hayakawa T, Furue MK (2012) Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther 20:127–137
CrossRef Google scholar
[73]
Takebe T, Zhang RR, Koike H,, Kimura M, Yoshizawa E, Enomura M, Koike N, Sekine K, Taniguchi H (2014) Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc 9:396–409
CrossRef Google scholar
[74]
Tigchelaar EF, Zhernakova A, Dekens JAM, Hermes G, Baranska A, Mujagic Z, Swertz MA, Muñoz AM, Deelen P,Cénit MC (2015) Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5:e006772
CrossRef Google scholar
[75]
Tigchelaar EF, Bonder MJ, Jankipersadsing SA, Fu J, Wijmenga C, Zhernakova A (2016) Gut microbiota composition associated with stool consistency. Gut 65:540–542
CrossRef Google scholar
[76]
Touw DJ (1997) Clinical implications of genetic polymorphisms and drug interactions mediated by cytochrome P-450 enzymes. Drug Metab Drug Interact 14:55–82
[77]
Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, Wilschut KJ, Lanz HL, Nicolas A, Ng CP, Joore J (2017) Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun.https://doi. org/10.1038/s41467-017-00259-3
CrossRef Google scholar
[78]
Wallace BD, Hongwei W, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh L-A, Mani S (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835
CrossRef Google scholar
[79]
Wang J, Thingholm LB, Skiecevičienė J, Rausch P, Kummen M, Hov JR, Degenhardt F, Heinsen F-A, Rühlemann MC, Szymczak S (2016) Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 48:1396–1406
CrossRef Google scholar
[80]
Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M (2017) Metformin alters the gut microbiome of individuals with treatmentnaive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858
CrossRef Google scholar
[81]
Yadav V,Gaisford S, Merchant HA, Basit AW (2013) Colonic bacterial metabolism of corticosteroids. Int J Pharm 457:268–274
CrossRef Google scholar
[82]
Yepuri G, Sukhovershin R, Nazari-Shafti TZ, Petrascheck M, Ghebre YT, Cooke JP (2016) Proton pump inhibitors accelerate endothelial senescence. Circ Res 118:e36–e42
CrossRef Google scholar
[83]
Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M (2015) Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1095
CrossRef Google scholar
[84]
Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z,, Vila AV, Falony G, Vieira-Silva S (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s) 2018
AI Summary AI Mindmap
PDF(1269 KB)

Accesses

Citations

Detail

Sections
Recommended

/