Decreased activity of RCAN1.4 is a potential risk factor for congenital heart disease in a Han Chinese population

Liangping Cheng, Peiqiang Li, He Wang, Xueyan Yang, Huiming Zhou, Wufan Tao, Jie Tian, Hongyan Wang

PDF(753 KB)
PDF(753 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (12) : 1039-1044. DOI: 10.1007/s13238-018-0525-8
LETTER

Decreased activity of RCAN1.4 is a potential risk factor for congenital heart disease in a Han Chinese population

Author information +
History +

Cite this article

Download citation ▾
Liangping Cheng, Peiqiang Li, He Wang, Xueyan Yang, Huiming Zhou, Wufan Tao, Jie Tian, Hongyan Wang. Decreased activity of RCAN1.4 is a potential risk factor for congenital heart disease in a Han Chinese population. Protein Cell, 2018, 9(12): 1039‒1044 https://doi.org/10.1007/s13238-018-0525-8

References

[1]
Alghanem AF, Wilkinson EL, Emmett MS, Aljasir MA, Holmes K, Rothermel BA, Simms VA, Heath VL, Cross MJ (2017) RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells. Angiogenesis 20:341–358
CrossRef Google scholar
[2]
Cordell HJ, Bentham J, Topf A, Zelenika D, Heath S, Mamasoula C, Cosgrove C, Blue G, Granados-Riveron J, Setchfield K (2013) Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat Genet 45:822–824
CrossRef Google scholar
[3]
de la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392:182–186
CrossRef Google scholar
[4]
Elmagrpy Z, Rayani A, Shah A, Habas E, Aburawi EH (2011) Down syndrome and congenital heart disease: why the regional difference as observed in the Libyan experience? Cardiovasc J Afr 22:306–309
CrossRef Google scholar
[5]
Fuentes JJ, Pritchard MA, Planas AM, Bosch A, Ferrer I, Estivill X (1995) A new human gene from the down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum Mol Genet 4:1935–1944
CrossRef Google scholar
[6]
Guo RY, Li XF, Bai S, Guo J, Ding N, Li ZZ (2015) Association between DSCR1 variations and congenital heart disease susceptibility. Med Sci Monit 21:3536–3539
CrossRef Google scholar
[7]
Lange AW, Molkentin JD, Yutzey KE (2004) DSCR1 gene expression is dependent on NFATc1 during cardiac valve formation and colocalizes with anomalous organ development in trisomy 16 mice. Dev Biol 266:346–360
CrossRef Google scholar
[8]
Lange AW, Yutzey KE (2006) NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev Biol 292:407–417
CrossRef Google scholar
[9]
Li X, Wang G, An Y, Li H, Li Y, Wu C (2015) Association between sequence variations in RCAN1 promoter and the risk of sporadic congenital heart disease in a Chinese population. Pediatr Cardiol 36:1393–1399
CrossRef Google scholar
[10]
Lyle R, Bena F, Gagos S, Gehrig C, Lopez G, Schinzel A, Lespinasse J, Bottani A, Dahoun S, Taine L (2009) Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet 17:454–466
CrossRef Google scholar
[11]
Qin L, Zhao D, Liu X, Nagy JA, Hoang MV, Brown LF, Dvorak HF, Zeng H (2006) Down syndrome candidate region 1 isoform 1 mediates angiogenesis through the calcineurin-NFAT pathway. Mol Cancer Res 4:811–820
CrossRef Google scholar
[12]
Soemedi R, Topf A, Wilson IJ, Darlay R, Rahman T, Glen E, Hall D, Huang N, Bentham J, Bhattacharya S (2012) Phenotypespecific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls. Hum Mol Genet 21:1513–1520
CrossRef Google scholar
[13]
Stoll C, Alembik Y, Dott B, Roth MP (1998) Study of Down syndrome in 238,942 consecutive births. Ann Genet 41:44–51
[14]
Vis JC, Duffels MG, Winter MM, Weijerman ME, Cobben JM, Huisman SA, Mulder BJ (2009) Down syndrome: a cardiovascular perspective. J Intellect Disabil Res 53:419–425
CrossRef Google scholar
[15]
Yang J, Rothermel B, Vega RB, Frey N, McKinsey TA, Olson EN, Bassel-Duby R, Williams RS (2000) Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ Res 87:E61–E68
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s) 2018
AI Summary AI Mindmap
PDF(753 KB)

Accesses

Citations

Detail

Sections
Recommended

/