C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death

Yang Li, Yu Zhang, Qiwen Gan, Meng Xu, Xiao Ding, Guihua Tang, Jingjing Liang, Kai Liu, Xuezhao Liu, Xin Wang, Lingli Guo, Zhiyang Gao, Xiaojiang Hao, Chonglin Yang

PDF(4390 KB)
PDF(4390 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (12) : 1013-1026. DOI: 10.1007/s13238-018-0520-0
RESEARCH ARTICLE

C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death

Author information +
History +

Abstract

Lysosomes are degradation and signaling centers within the cell, and their dysfunction impairs a wide variety of cellular processes. To understand the cellular effect of lysosome damage, we screened natural smallmolecule compounds that induce lysosomal abnormality using Caenorhabditis elegans (C. elegans) as a model system. A group of vobasinyl-ibogan type bisindole alkaloids (ervachinines A–D) were identified that caused lysosome enlargement in C. elegans macrophage-like cells. Intriguingly, these compounds triggered cell death in the germ line independently of the canonical apoptosis pathway. In mammalian cells, ervachinines A–D induced lysosomal enlargement and damage, leading to leakage of cathepsin proteases, inhibition of autophagosome degradation and necrotic cell death. Further analysis revealed that this ervachinine-induced lysosome damage and lysosomal cell death depended on STAT3 signaling, but not RIP1 or RIP3 signaling. These findings suggest that lysosomedamaging compounds are promising reagents for dissecting signaling mechanisms underlying lysosome homeostasis and lysosome-related human disorders.

Keywords

lysosome / alkaloids / lysosomal cell death / STAT3 / Caenorhabditis elegans

Cite this article

Download citation ▾
Yang Li, Yu Zhang, Qiwen Gan, Meng Xu, Xiao Ding, Guihua Tang, Jingjing Liang, Kai Liu, Xuezhao Liu, Xin Wang, Lingli Guo, Zhiyang Gao, Xiaojiang Hao, Chonglin Yang. C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death. Protein Cell, 2018, 9(12): 1013‒1026 https://doi.org/10.1007/s13238-018-0520-0

References

[1]
Almaguel F, Liu J, Pacheco F, De Leon D, Casiano C, De Leon M (2010) Lipotoxicity-mediated cell dysfunction and death involve lysosomal membrane permeabilization and cathepsin L activity. Brain Res 1318:133–143
CrossRef Google scholar
[2]
Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451
CrossRef Google scholar
[3]
Chen C, Chen W, Zhou M, Arttamangkul S, Haugland RP (2000) Probing the cathepsin D using a BODIPY FL-pepstatin A: applications in fluorescence polarization and microscopy. J Biochem Biophys Methods 42(3):137–151
CrossRef Google scholar
[4]
Fares H, Greenwald I (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159(1):133–145
[5]
Fruh M, Ris HB, Xyrafas A, Peters S, Mirimanoff RO, Gautschi O, Pless M, Stupp R (2016) Preoperative chemoradiotherapy with cisplatin and docetaxel for stage IIIB non-small-cell lung cancer: 10-year follow-up of the SAKK 16/01 trial. Ann Oncol 27 (10):1971–1973
CrossRef Google scholar
[6]
Gonzalez P, Mader I, Tchoghandjian A, Enzenmuller S, Cristofanon S, Basit F, Debatin KM, Fulda S (2012) Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ 19(8):1337–1346
CrossRef Google scholar
[7]
Guo L, He H, Di Y, Li S, Cheng Y, Yang W, Li Y, Yu J,Zhang Y, Hao X (2012) Indole alkaloids from Ervatamia chinensis. Phytochemistry 74:140–145
CrossRef Google scholar
[8]
Horvitz HR, Shaham S, Hengartner MO (1994) The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 59:377–385
CrossRef Google scholar
[9]
Kreuzaler P, Staniszewska A, Li W, Omidvar N, Kedjouar B, Turkson J, Poli V, Flavell R, Clarkson R, Watson C (2011) Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol 13(3):303–309
CrossRef Google scholar
[10]
Li Y, Xu M, Ding X, Yan C, Song Z, Chen L, Huang X, Wang X, Jian Y, Tang G, Tang C, Di Y, Mu S, Liu X, Liu K, Li T, Wang Y,Miao L, Guo W, Hao X, Yang C (2016) Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 18 (10):1065–1077
CrossRef Google scholar
[11]
Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR Jr (1995) Expression and function of galectin-3, a beta-galactosidebinding lectin, in human monocytes and macrophages. Am J Pathol 147(4):1016–1028
[12]
Liu K, Jian Y, Sun X, Gao Z, Zhang Z, Liu X, Li Y, Xu J, Jing Y, Mitani S, He S, Yang C (2016) Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion. J Cell Biol 212(2):181–198
CrossRef Google scholar
[13]
Loison F, Zhu H, Karatepe K, Kasorn A, Liu P, Ye K, Zhou J, Cao S, Gong H, Jenne D, Remold-O’Donnell E, Xu Y, Luo HR (2014) Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation. J Clin Invest 124(10):4445–4458
CrossRef Google scholar
[14]
Macauley S (2016) Combination therapies for lysosomal storage diseases: a complex answer to a simple problem. Pediatr Endocrinol Rev 13(Suppl 1):639–648
[15]
Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, Yoshimori T (2013) Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32(17):2336–2347
CrossRef Google scholar
[16]
Meschini S, Condello M, Calcabrini A, Marra M, Formisano G, Lista P, De Milito A, Federici E, Arancia G (2008) The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells. Autophagy 4(8):1020–1033
CrossRef Google scholar
[17]
Nixon R (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997
CrossRef Google scholar
[18]
Oberle C, Huai J, Reinheckel T, Tacke M, Rassner M, Ekert PG, Buellesbach J,Borner C (2010) Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ 17(7):1167–1178
CrossRef Google scholar
[19]
Ono K, Kim SO, Han J (2003) Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death. Mol Cell Biol 23(2):665–676
CrossRef Google scholar
[20]
Perera R, Stoykova S, Nicolay B, Ross K,Fitamant J,Boukhali M, Lengrand J, Deshpande V, Selig M, Ferrone C, Settleman J, Stephanopoulos G, Dyson N, Zoncu R, Ramaswamy S, Haas W, Bardeesy N (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524 (7565):361–365
CrossRef Google scholar
[21]
Prince L, Bianchi S, Vaughan K, Bewley M, Marriott H, Walmsley S, Taylor G, Buttle D, Sabroe I, Dockrell D, Whyte M (2008) Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin. J Immunol 180 (5):3502–3511
CrossRef Google scholar
[22]
Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635
CrossRef Google scholar
[23]
Sargeant T, Lloyd-Lewis B, Resemann H, Ramos-Montoya A, Skepper J, Watson C(2014) Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol 16(11):1057–1068
CrossRef Google scholar
[24]
Sato K, Norris A, Sato M, Grant B (2016) C. elegans as a model for membrane traffic. Wormbook. https://doi.org/10.1895/wormbook. 1.77.2
[25]
Sukhai MA, Prabha S, Hurren R, Rutledge AC, Lee AY, Sriskanthadevan S, Sun H, Wang X, Skrtic M, Seneviratne A, Cusimano M, Jhas B, Gronda M, MacLean N, Cho EE, Spagnuolo PA, Sharmeen S, Gebbia M, Urbanus M, Eppert K, Dissanayake D, Jonet A, Dassonville-Klimpt A, Li X, Datti A, Ohashi PS, Wrana J, Rogers I, Sonnet P,Ellis WY, Corey SJ, Eaves C, Minden MD, Wang JC, Dick JE, Nislow C, Giaever G, Schimmer AD (2013) Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J Clin Invest 123(1):315–328
CrossRef Google scholar
[26]
Sun L, Wang X (2014) A new kind of cell suicide: mechanisms and functions of programmed necrosis. Trends Biochem Sci 39 (12):587–593
CrossRef Google scholar
[27]
Taniguchi M, Ogiso H, Takeuchi T, Kitatani K, Umehara H, Okazaki T (2015) Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis. Cell Death Dis 6:e1717
CrossRef Google scholar
[28]
Vainchenker W, Constantinescu SN (2013) JAK/STAT signaling in hematological malignancies. Oncogene 32(21):2601–2613
CrossRef Google scholar
[29]
Xu M, Liu Y, Zhao L, Gan Q,Wang X, Yang C (2014) The lysosomal cathepsin protease CPL-1 plays a leading role in phagosomal degradation of apoptotic cells in Caenorhabditis elegans.Mo.l.Biol Cell 25(13):2071–2083
CrossRef Google scholar
[30]
Zhu W, Tao L, Quick M, Joyce A, Qu J, Luo Z (2015) Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection. PLoS Pathog 11(3): e1004704
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s) 2018. This article is an open access publication
AI Summary AI Mindmap
PDF(4390 KB)

Accesses

Citations

Detail

Sections
Recommended

/