Transmembrane domain dependent inhibitory function of FcγRIIB

Junyi Wang, Zongyu Li, Liling Xu, Hengwen Yang, Wanli Liu

PDF(1330 KB)
PDF(1330 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (12) : 1004-1012. DOI: 10.1007/s13238-018-0509-8
REVIEW
REVIEW

Transmembrane domain dependent inhibitory function of FcγRIIB

Author information +
History +

Abstract

FcγRIIB, the only inhibitory IgG Fc receptor, functions to suppress the hyper-activation of immune cells. Numerous studies have illustrated its inhibitory function through the ITIM motif in the cytoplasmic tail of FcγRIIB. However, later studies revealed that in addition to the ITIM, the transmembrane (TM) domain of FcγRIIB is also indispensable for its inhibitory function. Indeed, recent epidemiological studies revealed that a non-synonymous single nucleotide polymorphism (rs1050501) within the TM domain of FcγRIIB, responsible for the I232T substitution, is associated with the susceptibility to systemic lupus erythematosus (SLE). In this review, we will summarize these epidemiological and functional studies of FcγRIIB-I232T in the past few years, and will further discuss the mechanisms accounting for the functional loss of FcγRIIB-I232T. Our review will help the reader gain a deeper understanding of the importance of the TM domain in mediating the inhibitory function of FcγRIIB and may provide insights to a new therapeutic target for the associated diseases.

Keywords

B cell / FcγRIIB / transmembrane domain / systemic lupus erythematosus / autoimmune disease

Cite this article

Download citation ▾
Junyi Wang, Zongyu Li, Liling Xu, Hengwen Yang, Wanli Liu. Transmembrane domain dependent inhibitory function of FcγRIIB. Protein Cell, 2018, 9(12): 1004‒1012 https://doi.org/10.1007/s13238-018-0509-8

References

[1]
Amigorena S, Bonnerot C, Choquet D, Fridman WH, Teillaud JL (1989) Fc-Gamma-Rii expression in resting and activated lymphocytes-B. Eur J Immunol 19:1379–1385
CrossRef Google scholar
[2]
Ballesteros JA, Deupi X, Olivella M, Haaksma EEJ, Pardo L (2000) Serine and threonine residues bend alpha-helices in the chi(1) = g(−) conformation. Biophys J 79:2754–2760
CrossRef Google scholar
[3]
Batista FD, Neuberger MS (2000) B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J 19:513–520
CrossRef Google scholar
[4]
Blank U, Launay P, Benhamou M, Monteiro RC (2009) Inhibitory ITAMs as novel regulators of immunity. Immunol Rev 232:59–71
CrossRef Google scholar
[5]
Bolland S, Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–285
CrossRef Google scholar
[6]
Bruin M, Bierings M, Uiterwaal C, Revesz T, Bode L, Wiesman ME, Kuijpers T, Tamminga R, de Haas M (2004) Platelet count, previous infection and FCGR2B genotype predict development of chronic disease in newly diagnosed idiopathic thrombocytopenia in childhood: results of a prospective study. Br J Haematol 127:561–567
CrossRef Google scholar
[7]
Chen JY, Wang CM, Wu JM, Ho HH, Luo SF (2006) Association of rheumatoid factor production with FcgammaRIIIa polymorphism in Taiwanese rheumatoid arthritis. Clin Exp Immunol 144:10–16
CrossRef Google scholar
[8]
Chen JY, Wang CM, Ma CC, Hsu LA, Ho HH, Wu YJJ, Kuo SN, Wu J (2008) A transmembrane polymorphism in Fc gamma RIIb (FCGR2B) is associated with the production of anti-cyclic citrullinated peptide autoantibodies in Taiwanese RA. Genes Immun 9:680–688
CrossRef Google scholar
[9]
Chu ZT, Tsuchiya N, Kyogoku C, Ohashi J, Qian YP, Xu SB, Mao CZ, Chu JY, Tokunaga K (2004) Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. Tissue Antigens 63:21–27
CrossRef Google scholar
[10]
Clatworthy MR, Willcocks L, Urban B, Langhorne J, Williams TN, Peshu N, Watkins NA, Floto RA, Smith KG (2007) Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgammaRIIb reduce susceptibility to malaria. Proc Natl Acad Sci USA 104:7169–7174
CrossRef Google scholar
[11]
Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234
CrossRef Google scholar
[12]
Daeron M, Malbec O, Latour S, Bonnerot C, Segal DM, Fridman WH (1993) Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine Fc gamma RII in mast cells. Int Immunol 5:1393–1401
CrossRef Google scholar
[13]
Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA, Rankin A, Lehner PJ, Ouwehand WH, Allen JM, Watkins NA, Smith KGC (2005) Loss of function of a lupus-associated Fc gamma RIIb polymorphism through exclusion from lipid rafts. Nat Med 11:1056–1058
CrossRef Google scholar
[14]
Fong DC, Brauweiler A, Minskoff SA, Bruhns P, Tamir I, Mellman I, Daeron M, Cambier JC (2000) Mutational analysis reveals multiple distinct sites within Fc gamma receptor IIB that function in inhibitory signaling. J Immunol 165:4453–4462
CrossRef Google scholar
[15]
Georgiou G, Bahra SS, Mackie AR, Wolfe CA, O’Shea P, Ladha S, Fernandez N, Cherry RJ (2002) Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe. Biophys J 82:1828–1834
CrossRef Google scholar
[16]
Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942
CrossRef Google scholar
[17]
Hippen KL, Buhl AM, Dambrosio D, Nakamura K, Persin C, Cambier JC (1997) Fc gamma RIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD19 dephosphorylation. Immunity 7:49–58
CrossRef Google scholar
[18]
Kono H, Suzuki T, Yamamoto K, Okada M, Yamamoto T, Honda Z (2002) Spatial raft coalescence represents an initial step in Fc gamma R signaling. J Immunol 169:193–203
CrossRef Google scholar
[19]
Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K, Tokunaga K, Honda Z (2005) FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 14:2881–2892
CrossRef Google scholar
[20]
Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A, Fukazawa T, Jansen MD, Hashimoto H, van de Winkel JG (2002a) Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254
CrossRef Google scholar
[21]
Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A, Fukazawa T, Jansen MD, Hashimoto H, van de Winkel JGJ (2002b) Fc gamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus- Contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254
CrossRef Google scholar
[22]
Kyogoku C, Tsuchiya N, Matsuta K, Tokunaga K (2002c) Studies on the association of Fc gamma receptor IIA, IIB, IIIA and IIIB polymorphisms with rheumatoid arthritis in the Japanese: evidence for a genetic interaction between HLA-DRB1 and FCGR3A. Genes Immun 3:488–493
CrossRef Google scholar
[23]
Kyogoku C, Tsuchiya N, Wu H, Tsao BP, Tokunaga K (2004) Association of Fcgamma receptor IIA, but not IIB and IIIA, polymorphisms with systemic lupus erythematosus: a familybased association study in Caucasians. Arthritis Rheum 50:671–673
CrossRef Google scholar
[24]
Lehmann B, Schwab I, Bohm S, Lux A, Biburger M, Nimmerjahn F (2012) FcgammaRIIB: a modulator of cell activation and humoral tolerance. Expert Rev Clin Immunol 8:243–254
CrossRef Google scholar
[25]
Li XR,Wu JM, Ptacek T, Redden DT, Brown EE, Alarcon GS, Ramsey-Goldman R, Petri MA, Reveille JD, Kaslow RA, (2013) Allelicdependent expression of an activating Fc receptor on B cells enhances humoral immune responses. Sci Transl Med 5
[26]
Liu WL, Sohn HW, Tolar P, Meckel T, Pierce SK (2010) Antigeninduced oligomerization of the B cell receptor is an early target of Fc gamma RIIB inhibition. J Immunol 184:1977–1989
CrossRef Google scholar
[27]
Lu J, Chu J, Zou Z,Hamacher NB, Rixon MW, Sun PD (2015) Structure of FcgammaRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. Proc Natl Acad Sci USA 112:833–838
CrossRef Google scholar
[28]
Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding. J Biol Chem 276:45539–45547
CrossRef Google scholar
[29]
Niederer HA, Clatworthy MR, Willcocks LC, Smith KG (2010a) FcgammaRIIB, FcgammaRIIIB, and systemic lupus erythematosus. Ann N Y Acad Sci 1183:69–88
CrossRef Google scholar
[30]
Niederer HA, Willcocks LC, Rayner TF, Yang W, Lau YL, Williams TN, Scott JA, Urban BC, Peshu N, Dunstan SJ (2010b) Copy number, linkage disequilibrium and disease association in the FCGR locus. Hum Mol Genet 19:3282–3294
CrossRef Google scholar
[31]
Nimmerjahn F, Ravetch JV (2008) Fc gamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47
CrossRef Google scholar
[32]
Nimmerjahn F, Ravetch JV (2011) FcγRs in health and disease. Curr Top Microbiol Immunol 350:105–125
CrossRef Google scholar
[33]
Pan F, Zhang K, Li X, Xu J, Hao J, Ye D (2006) Association of Fcgamma receptor IIB gene polymorphism with genetic susceptibility to systemic lupus erythematosus in Chinese populations–a family-based association study. J Dermatol Sci 43:35–41
CrossRef Google scholar
[34]
Peress NS (1993) Identification of Fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer’s disease. J Neuroimmunol 48:71–79
CrossRef Google scholar
[35]
Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV (2014a) Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 15:707–716
CrossRef Google scholar
[36]
Pincetic A, Bournazos S, Dilillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV (2014b) Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 15:707
CrossRef Google scholar
[37]
Radstake TRDJ, Franke B, Wenink MH, Nabbe KCAA, Coenen MJH, Welsing P, Bonvini E, Koenig S, van den Berg WB, Barrera P, van Riel PLCM (2006) The functional variant of the inhibitory Fc gamma receptor IIb (CD32B) is associated with the rate of radiologic joint damage and dendritic cell function in rheumatoid arthritis. Arthritis Rheum 54:3828–3837
CrossRef Google scholar
[38]
Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492
CrossRef Google scholar
[39]
Siriboonrit U, Tsuchiya N, Sirikong M, Kyogoku C, Bejrachandra S, Suthipinittharm P,Luangtrakool K, Srinak D, Thongpradit R, Fujiwara K (2003) Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61:374–383
CrossRef Google scholar
[40]
Smith KG, Clatworthy MR (2010a) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10:328–343
CrossRef Google scholar
[41]
Smith KGC, Clatworthy MR (2010b) Fc[gamma]RIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10:328–343
CrossRef Google scholar
[42]
Sohn HW, Pierce SK, Tzeng SJ (2008a) Live cell imaging reveals that the inhibitory Fc gamma RIIB destabilizes B cell receptor membrane-lipid blocks immune synapse formation. J Immunol 180:793–799
CrossRef Google scholar
[43]
Sohn HW, Tolar P, Pierce SK (2008b) Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J Cell Biol 182:367–379
CrossRef Google scholar
[44]
Starbeck-Miller GR, Badovinac VP, Barber DL, Harty JT (2014) Cutting edge: expression of FcgammaRIIB tempers memory CD8 T cell function in vivo. J Immunol 192:35–39
CrossRef Google scholar
[45]
Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N, Nimmerjahn F, Lunemann JD (2009) Impaired inhibitory Fc gamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA 106:4788–4792
CrossRef Google scholar
[46]
Tanimura N, Nagafuku M, Minaki Y, Umeda Y, Hayashi F, Sakakura J, Kato A, Liddicoat DR, Ogata M, Hamaoka T, Kosugi A (2003) Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation. J Cell Biol 160:125–135
CrossRef Google scholar
[47]
Tolar P, Sohn HW, Pierce SK(2005) The initiation of antigen-inducedB cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol 6:1168–1176
CrossRef Google scholar
[48]
Warmerdam PAM, Nabben NMJM, Vandegraaf SAR, Vandewinkel JGJ, Capel PJA (1993) The human low affinity immunoglobulin-G Fc receptor-Iic gene is a result of an unequal crossover event. J Biol Chem 268:7346–7349
[49]
Willcocks LC, Carr EJ, Niederer HA, Rayner TF, Williams TN, Yang WL, Scott JAG, Urban BC, Peshu N, Vyse TJ(2010) A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc Natl Acad Sci USA 107:7881–7885
CrossRef Google scholar
[50]
Xu L, Li G, Wang J, Fan Y, Wan Z, Zhang S, Shaheen S, Li J, Wang L, Yue C (2014) Through an ITIM-independent mechanism the FcgammaRIIB blocks B cell activation by disrupting the colocalized microclustering of the B cell receptor and CD19. J Immunol 192:5179–5191
CrossRef Google scholar
[51]
Xu L, Xia M, Guo J, Sun X, Li H, Xu C, Gu X, Zhang H, Yi J, Fang Y (2016) Impairment on the lateral mobility induced by structural changes underlies the functional deficiency of the lupus-associated polymorphism FcgammaRIIB-T232. J Exp Med 213:2707–2727
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s) 2018. This article is an open access publication
AI Summary AI Mindmap
PDF(1330 KB)

Accesses

Citations

Detail

Sections
Recommended

/