Regeneration of functional alveoli by adult human SOX9+ airway basal cell transplantation

Qiwang Ma, Yu Ma, Xiaotian Dai, Tao Ren, Yingjie Fu, Wenbin Liu, Yufei Han, Yingchuan Wu, Yu Cheng, Ting Zhang, Wei Zuo

PDF(3772 KB)
PDF(3772 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (3) : 267-282. DOI: 10.1007/s13238-018-0506-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Regeneration of functional alveoli by adult human SOX9+ airway basal cell transplantation

Author information +
History +

Abstract

Irreversible destruction of bronchi and alveoli can lead to multiple incurable lung diseases. Identifying lung stem/progenitor cells with regenerative capacity and utilizing them to reconstruct functional tissue is one of the biggest hopes to reverse the damage and cure such diseases. Here we showed that a rare population of SOX9+ basal cells (BCs) located at airway epithelium rugae can regenerate adult human lung. Human SOX9+ BCs can be readily isolated by bronchoscopic brushing and indefinitely expanded in feeder-free condition. Expanded human SOX9+ BCs can give rise to alveolar and bronchiolar epithelium after being transplanted into injured mouse lung, with air-blood exchange system reconstructed and recipient’s lung function improved. Manipulation of lung microenvironment with Pirfenidone to suppress TGF-β signaling could further boost the transplantation efficiency. Moreover, we conducted the first autologous SOX9+ BCs transplantation clinical trial in two bronchiectasis patients. Lung tissue repair and pulmonary function enhancement was observed in patients 3–12 months after cell transplantation. Altogether our current work indicated that functional adult human lung structure can be reconstituted by orthotopic transplantation of tissue-specific stem/progenitor cells, which could be translated into a mature regenerative therapeutic strategy in near future.

Keywords

lung / regeneration / transplantation / stem cell / bronchiectasis / alveoli

Cite this article

Download citation ▾
Qiwang Ma, Yu Ma, Xiaotian Dai, Tao Ren, Yingjie Fu, Wenbin Liu, Yufei Han, Yingchuan Wu, Yu Cheng, Ting Zhang, Wei Zuo. Regeneration of functional alveoli by adult human SOX9+ airway basal cell transplantation. Protein Cell, 2018, 9(3): 267‒282 https://doi.org/10.1007/s13238-018-0506-y

References

[1]
Asano S, Takemura T, Katoh K, Taneda M, Kitagawa M (2011) Epithelial regeneration after diffuse alveolar damage in relation to underlying disease and DAD stage: an autopsy study . Journal of medical and dental sciences 58:113–121
[2]
Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BL (2013) Type 2 alveolar cells are stem cells in adult lung . The Journal of clinical investigation 123:3025–3036. https://doi.org/10.1172/JCI68782
CrossRef Google scholar
[3]
Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung . Development 124:4867–4878
[4]
Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH (2011) Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice . The Journal of clinical investigation 121:2855–2862. https://doi.org/10.1172/JCI57673
CrossRef Google scholar
[5]
Cheng Y, Samia CA, Meyers JD, Panagopoulos I, Fei B, Burda C (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer . Journal of the American Chemical Society 130:10643–10647. https://doi.org/10.1021/ja801631c
CrossRef Google scholar
[6]
Chilosi M, Poletti V, Murer B, Lestani M, Cancellieri A, Montagna L, Piccoli P, Cangi G, Semenzato G, Doglioni C (2002) Abnormal reepithelialization and lung remodeling in idiopathic pulmonary fibrosis: the role of deltaN-p63 . Laboratory investigation; a journal of technical methods and pathology 82:1335–1345
CrossRef Google scholar
[7]
Clevers H (2013) The intestinal crypt, a prototype stem cell compartment . Cell 154:274–284. https://doi.org/10.1016/j.cell.2013.07.004
CrossRef Google scholar
[8]
Copelan EA (2006) Hematopoietic stem-cell transplantation . The New England journal of medicine 354:1813–1826. https://doi.org/10.1056/NEJMra052638
CrossRef Google scholar
[9]
Desai TJ, Brownfield DG, Krasnow MA (2014) Alveolar progenitor and stem cells in lung development, renewal and cancer . Nature 507:190–194. https://doi.org/10.1038/nature12930
CrossRef Google scholar
[10]
Gallico GG 3rd, O’Connor NE, Compton CC, Kehinde O, Green H (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium . The New England journal of medicine 311:448–451. https://doi.org/10.1056/NEJM198408163110706
CrossRef Google scholar
[11]
Hackett NR, Shaykhiev R, Walters MS, Wang R, Zwick RK, Ferris B, Witover B, Salit J, Crystal RG (2011) The human airway epithelial basal cell transcriptome . PloS one 6:e18378. https://doi.org/10.1371/journal.pone.0018378
CrossRef Google scholar
[12]
Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function . Cell stem cell 15:123–138. https://doi.org/10.1016/j.stem.2014.07.012
CrossRef Google scholar
[13]
Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW (2014) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells . Nature biotechnology 32:84–91. https://doi.org/10.1038/nbt.2754
CrossRef Google scholar
[14]
Ke MT, Fujimoto S, Imai T (2013) SeeDB: a simple and morphologypreserving optical clearing agent for neuronal circuit reconstruction . Nature neuroscience 16:1154–1161. https://doi.org/10.1038/nn.3447
CrossRef Google scholar
[15]
Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer . Cell 121:823–835. https://doi.org/10.1016/j.cell.2005.03.032
CrossRef Google scholar
[16]
King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L, Lederer DJ, Nathan SD, Pereira CA, Sahn SA, Sussman R, Swigris JJ, Noble PW, Group AS (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis . The New England journal of medicine 370:2083–2092. https://doi.org/10.1056/nejmoa1402582
CrossRef Google scholar
[17]
Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations . Nature medicine 20:822–832. https://doi.org/10.1038/nm.3642
CrossRef Google scholar
[18]
Mannino DM (2002) COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity . Chest 121:121S–126S
CrossRef Google scholar
[19]
Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells . Cytokine & growth factor reviews 20:419–427. https://doi.org/10.1016/j.cytogfr.2009
CrossRef Google scholar
[20]
Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, Zhang B, Solomon GM, Turner B, Bihler H, Harrington J, Lapey A, Channick C, Keyes C, Freund A, Artandi S, Mense M, Rowe S, Engelhardt JF, Hsu YC, Rajagopal J (2016) Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells . Cell stem cell 19:217–231. https://doi.org/10.1016/j.stem.2016.05.012
CrossRef Google scholar
[21]
Moulton BC, Barker AF (2012) Pathogenesis of bronchiectasis . Clinics in chest medicine 33:211–217. https://doi.org/10.1016/j.ccm.2012.02.004
CrossRef Google scholar
[22]
Nichane M, Javed A, Sivakamasundari V, Ganesan M, Ang LT, Kraus P, Lufkin T, Loh KM, Lim B (2017) Isolation and 3D expansion of multipotent Sox9(+) mouse lung progenitors . Nature methods 14:1205–1212. https://doi.org/10.1038/nmeth.4498
CrossRef Google scholar
[23]
Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung . Nature medicine 16:927–933. https://doi.org/10.1038/nm.2193
CrossRef Google scholar
[24]
Perl AK, Kist R, Shan Z, Scherer G, Whitsett JA (2005) Normal lung development and function after Sox9 inactivation in the respiratory epithelium . Genesis 41:23–32. https://doi.org/10.1002/gene.20093
CrossRef Google scholar
[25]
Phan SH (2012) Genesis of the myofibroblast in lung injury and fibrosis . Proceedings of the American Thoracic Society 9:148–152. https://doi.org/10.1513/pats.201201-011AW
CrossRef Google scholar
[26]
Rajagopal J, Carroll TJ, Guseh JS, Bores SA, Blank LJ, Anderson WJ, Yu J, Zhou Q, McMahon AP, Melton DA (2008) Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme . Development 135:1625–1634. https://doi.org/10.1242/dev.015495
CrossRef Google scholar
[27]
Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency . Transplantation 72:1478–1485
CrossRef Google scholar
[28]
Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G (2010) Limbal stem-cell therapy and long-term corneal regeneration . The New England journal of medicine 363:147–155. https://doi.org/10.1056/NEJMoa0905955
CrossRef Google scholar
[29]
Rockich BE, Hrycaj SM, Shih HP, Nagy MS, Ferguson MA, Kopp JL, Sander M, Wellik DM, Spence JR (2013) Sox9 plays multiple roles in the lung epithelium during branching morphogenesis . Proceedings of the National Academy of Sciences of the United States of America 110:E4456–4464. https://doi.org/10.1073/pnas.1311847110
CrossRef Google scholar
[30]
Rosen C, Shezen E, Aronovich A, Klionsky YZ, Yaakov Y, Assayag M, Biton IE, Tal O, Shakhar G, Ben-Hur H, Shneider D, Vaknin Z, Sadan O, Evron S, Freud E, Shoseyov D, Wilschanski M, Berkman N, Fibbe WE, Hagin D, Hillel-Karniel C, Krentsis IM, Bachar-Lustig E, ReisnerY (2015) Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice . Nature medicine 21:869–879. https://doi.org/10.1038/nm.3889
CrossRef Google scholar
[31]
Selman M, Thannickal VJ, Pardo A, Zisman DA, Martinez FJ, Lynch JP 3rd (2004) Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches . Drugs 64:405–430
CrossRef Google scholar
[32]
Smirnova NF, Schamberger AC, Nayakanti S, Hatz R, Behr J, Eickelberg O (2016) Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs . Respiratory research 17:83. https://doi.org/10.1186/s12931-016-0404-x
CrossRef Google scholar
[33]
ten Hacken NH, Wijkstra PJ, Kerstjens HA (2007) Treatment of bronchiectasis in adults . Bmj 335:1089–1093. https://doi.org/10.1136/bmj.39384.657118.80
CrossRef Google scholar
[34]
Tsao PN, Chen F, Izvolsky KI, Walker J, Kukuruzinska MA, Lu J, Cardoso WV (2008) Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung . The Journal of biological chemistry 283:29532–29544. https://doi.org/10.1074/jbc.M801565200
CrossRef Google scholar
[35]
Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A, Zissimopoulos A, Boussios N, Dardzinski B, Gritzalis D, Antoniadis A, Froudarakis M, Kolios G, Bouros D (2013) A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis . Journal of translational medicine 11:171. https://doi.org/10.1186/1479-5876-11-171
CrossRef Google scholar
[36]
Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B, Tan K, Tan V, Liu FC, Looney MR, Matthay MA, Rock JR, Chapman HA (2015) Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury . Nature 517:621–625. https://doi.org/10.1038/nature14112
CrossRef Google scholar
[37]
Wang X, Yamamoto Y, Wilson LH, Zhang T, Howitt BE, Farrow MA, Kern F, Ning G, Hong Y, Khor CC, Chevalier B, Bertrand D, Wu L, Nagarajan N, Sylvester FA, Hyams JS, Devers T, Bronson R, Lacy DB, Ho KY, Crum CP, McKeon F, Xian W (2015) Cloning and variation of ground state intestinal stem cells . Nature 522:173–178. https://doi.org/10.1038/nature14484
CrossRef Google scholar
[38]
Wimberley NW, Bass JB Jr, Boyd BW, Kirkpatrick MB, Serio RA, Pollock HM (1982) Use of a bronchoscopic protected catheter brush for the diagnosis of pulmonary infections . Chest 81:556–562
CrossRef Google scholar
[39]
Zhang HY, Gharaee-Kermani M, Zhang K, Karmiol S, Phan SH (1996) Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis . The American journal of pathology 148:527–537
[40]
Zuo W, Zhang T, Wu DZ, Guan SP, Liew AA, Yamamoto Y, Wang X, Lim SJ, Vincent M, Lessard M, Crum CP, Xian W, McKeon F (2015) p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration . Nature 517:616–620. https://doi.org/10.1038/nature13903
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s) 2018. This article is an open access publication
AI Summary AI Mindmap
PDF(3772 KB)

Accesses

Citations

Detail

Sections
Recommended

/