TDP-43 regulates cancer-associated microRNAs
Xiaowei Chen, Zhen Fan, Warren McGee, Mengmeng Chen, Ruirui Kong, Pushuai Wen, Tengfei Xiao, Xiaomin Chen, Jianghong Liu, Li Zhu, Runsheng Chen, Jane Y. Wu
TDP-43 regulates cancer-associated microRNAs
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.
TDP-43 / miRNA / cancer / migration / prognosis
[1] |
Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, Lao K, Kosik KS (2008) Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 9:153–161
CrossRef
Google scholar
|
[2] |
Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ (2017) Targeting noncoding RNAs in disease. J Clin Investig 127 (3):761–771
CrossRef
Google scholar
|
[3] |
Al-Shahrour F, Arbiza L, Dopazo H, Huerta-Cepas J, Mínguez P, Montaner D, Dopazo J(2007a) From genes to functional classes in the study of biological systems. BMC Bioinform 8:114
CrossRef
Google scholar
|
[4] |
Al-Shahrour F, Minguez P, Tarraga J, Medina I, Alloza E, Montaner D, Dopazo J (2007b) FatiGO+: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res 35:W91–W96
CrossRef
Google scholar
|
[5] |
Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355
CrossRef
Google scholar
|
[6] |
Ambros V (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21:511–517
CrossRef
Google scholar
|
[7] |
Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995
CrossRef
Google scholar
|
[8] |
Ayala YM, De Conti L, Avendano-Vazquez SE, Dhir A, Romano M, D’Ambrogio A, Tollervey J, Ule J, Baralle M, Buratti E
CrossRef
Google scholar
|
[9] |
Baccarini A, Chauhan H, Gardner Thomas J, Jayaprakash Anitha D, Sachidanandam R, Brown Brian D (2011) Kinetic analysis reveals the fate of a micrornA following target regulation in mammalian cells. Curr Biol 21:369–376
CrossRef
Google scholar
|
[10] |
Baker RG, Hsu CJ, Lee D, Jordan MS, Maltzman JS, Hammer DA, Baumgart T, Koretzky GA (2009) The adapter protein SLP-76 mediates “outside-in” integrin signaling and function in T cells. Mol Cell Biol 29:5578–5589
CrossRef
Google scholar
|
[11] |
Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11
CrossRef
Google scholar
|
[12] |
Baralle M, Buratti E, Baralle FE (2013) The role of TDP-43 in the pathogenesis of ALS and FTLD. BiochemSoc Trans 41:1536–1540
CrossRef
Google scholar
|
[13] |
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233
CrossRef
Google scholar
|
[14] |
Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional nonconserved and non-canonical sites. Genome Biol 11:R90
CrossRef
Google scholar
|
[15] |
Bland JM, Altman DG (2004) The logrank test. BMJ 328:1073
CrossRef
Google scholar
|
[16] |
Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet . 17(12):719–732
CrossRef
Google scholar
|
[17] |
Buratti E, De Conti L, Stuani C, Romano M, Baralle M, Baralle F (2010) Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J 277:2268–2281
CrossRef
Google scholar
|
[18] |
Buratti E, Romano M, Baralle FE (2013) TDP-43 high throughput screening analyses in neurodegeneration: advantages and pitfalls. Mol Cell Neurosci 56:465–474
CrossRef
Google scholar
|
[19] |
Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866
CrossRef
Google scholar
|
[20] |
Campos-Melo D, Droppelmann CA, Volkening K, Strong MJ (2014) RNA-binding proteins as molecular links between cancer and neurodegeneration. Biogerontology 15:587–610
CrossRef
Google scholar
|
[21] |
Chan PP, Lowe TM (2009) GtRNAdb: adatabase of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–D97
CrossRef
Google scholar
|
[22] |
Chen Y, Song Y, Wang Z, Yue Z, Xu H, Xing C, Liu Z (2010) Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg 14:1170–1179
CrossRef
Google scholar
|
[23] |
Collins FS, Barker AD (2007) Mapping the cancer genome. Sci Am 296:50–57
CrossRef
Google scholar
|
[24] |
Cox DR (1972) Regression models and lift-tables. J R Stat Soc Ser B 34:187–220 (Methodological)
|
[25] |
Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, Marsh CB, Otterson GA, Nana-Sinkam SP (2009) MicroRNA 133B targets prosurvival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun 388:483–489
CrossRef
Google scholar
|
[26] |
Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz LA Jr, Sjoblom T, Barad O, Bentwich Z, Szafranska AE, Labourier E
CrossRef
Google scholar
|
[27] |
Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12:19–31
CrossRef
Google scholar
|
[28] |
Delfino KR, Serao NV, Southey BR, Rodriguez-Zas SL (2011) Therapy-, gender- and race-specific microRNA markers, target genes and networks related to glioblastoma recurrence and survival. Cancer Genom Proteom 8:173–183
|
[29] |
Dodt M, Roehr J, Ahmed R, Dieterich C (2012) FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1:895–905
CrossRef
Google scholar
|
[30] |
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1
CrossRef
Google scholar
|
[31] |
Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269
CrossRef
Google scholar
|
[32] |
Fan Z, Chen X, Chen R (2014) Transcriptome-wide analysis of TDP-43 binding small RNAs identifies miR-NID1 (miR-8485), a novel miRNA that represses NRXN1 expression. Genomics 103:76–82
CrossRef
Google scholar
|
[33] |
Fang HY, Chen SB, Guo DJ, Pan SY, Yu ZL (2011) Proteomic identification of differentially expressed proteins in curcumintreated MCF-7 cells. Phytomedicine 18:697–703
CrossRef
Google scholar
|
[34] |
Fanini F, Vannini I, Amadori D, Fabbri M (2011) Clinical implications of microRNAs in lung cancer. Semin Oncol 38:776–780
CrossRef
Google scholar
|
[35] |
Fernandez-Valverde SL, Taft RJ, Mattick JS (2010) Dynamic isomiR regulation in Drosophila development. Rna 16:1881–1888
CrossRef
Google scholar
|
[36] |
Freischmidt A, Müller K, Ludolph AC, Weishaupt JH (2013) Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun 1(1):42
CrossRef
Google scholar
|
[37] |
Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105
CrossRef
Google scholar
|
[38] |
Gangnon KT, Maxwell ES (2011) Elecrophoretic mobility shift assay for characterizing RNA-protein interaction. Methods Mol Biol 703:275–291
CrossRef
Google scholar
|
[39] |
Gascon E, Gao FB (2014) The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders. J Neurogenet 28(1–2):30–40
CrossRef
Google scholar
|
[40] |
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240
CrossRef
Google scholar
|
[41] |
Griffiths-Jones S, Hui JHL, Marco A, Ronshaugen M (2011) MicroRNA evolution by arm switching. EMBO Rep 12:172–177
CrossRef
Google scholar
|
[42] |
Guo L, Yang Q, Lu J, Li H, Ge Q, Gu W, Bai Y, Lu Z (2011) A comprehensive survey of miRNA repertoire and 3’ addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing. PLoS ONE 6:e21072
CrossRef
Google scholar
|
[43] |
Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39: W132–W138
CrossRef
Google scholar
|
[44] |
Hammerman PS, Lawrence MS, Voet D, Jing R, Cibulskis K, Sivachenko A, Stojanov P, McKenna A, Lander ES, Gabriel S
CrossRef
Google scholar
|
[45] |
Hu Z, Wu C, Shi Y, Guo H, Zhao X, Yin Z, Yang L, Dai J, Hu L, Tan W
CrossRef
Google scholar
|
[46] |
Huang JF, Wang Y, Guo YJ, Sun SH (2010) Down-regulated microRNA-152 induces aberrant DNA methylation in Hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52:60–70
CrossRef
Google scholar
|
[47] |
Humphreys DT, Hynes CJ, Patel HR, Wei GH, Cannon L, Fatkin D, Suter CM, Clancy JL, Preiss T (2012) Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function. PLoS One 7:e30933
CrossRef
Google scholar
|
[48] |
Hurd PJ, Nelson CJ (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genom Proteom 8:174–183
CrossRef
Google scholar
|
[49] |
Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37: D98–D104
CrossRef
Google scholar
|
[50] |
Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet . 16(7):421–433
CrossRef
Google scholar
|
[51] |
Kawahara Y, Mieda-Sato A (2012) TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes . Proc Natl Acad Sci USA 109:3347–3352
CrossRef
Google scholar
|
[52] |
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284
CrossRef
Google scholar
|
[53] |
Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216
CrossRef
Google scholar
|
[54] |
Kocerha J, Kouri N, Baker M, Finch N, DeJesus-Hernandez M, Gonzalez J, Chidamparam K, Josephs KA, Boeve BF, Graff-Radford NR
CrossRef
Google scholar
|
[55] |
Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) microRNAs in cancer management. Lancet Oncol 13:e249–e258
CrossRef
Google scholar
|
[56] |
Kozomara A, Griffiths-Jones S (2011) miRBase: integrating micro-RNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157
CrossRef
Google scholar
|
[57] |
Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73
CrossRef
Google scholar
|
[58] |
Krzywinski M, Birol I, Jones SJM, Marra MA (2012) Hive plotsrational approach to visualizing networks. Brief Bioinform 13:627–644
CrossRef
Google scholar
|
[59] |
Kuo PH, Doudeva LG, Wang YT, Shen CKJ, Yuan HS (2009) Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 37:1799–1808
CrossRef
Google scholar
|
[60] |
Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19(R1):R46–R64
CrossRef
Google scholar
|
[61] |
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M
CrossRef
Google scholar
|
[62] |
Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25
CrossRef
Google scholar
|
[63] |
Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K (2010) Complexity of the microRNA repertoire revealed by nextgeneration sequencing. RNA 16:2170–2180
CrossRef
Google scholar
|
[64] |
Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50
CrossRef
Google scholar
|
[65] |
Lestrade L, Weber MJ (2006) snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 34:D158–D162
CrossRef
Google scholar
|
[66] |
Li S-C, Liao Y-L, Ho M-R, Tsai K-W, Lai C-H, Lin W-C (2012a) miRNA arm selection and isomiR distribution in gastric cancer. BMC Genome 13:S13
CrossRef
Google scholar
|
[67] |
Li Z, Lu Y, Xu XL, Gao FB (2012b) The FTD/ALS associated RNA binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila. Hum Mol Genet 22(2):218–225
CrossRef
Google scholar
|
[68] |
Li Y, Liang C, Wong K-C, Jin K, Zhang Z (2014) Inferring probabilistic miRNA–mRNA interaction signatures in cancers: a role-switch approach. Nucleic Acids Res 42(9):e76
CrossRef
Google scholar
|
[69] |
Lin J, Huang S, Wu S, Ding J, Zhao Y, Liang L, Tian Q, Zha R, Zhan R, He X (2011) MicroRNA-423 promotes cell growth and regulates G1/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis 32:1641–1647
CrossRef
Google scholar
|
[70] |
Liu N, Abe M, Sabin Leah R, Hendriks G-J, Naqvi Ammar S, Yu Z, Cherry S, Bonini Nancy M (2011) The exoribonuclease nibbler controls 3′ end processing of micrornas in drosophila. Curr Biol 21:1888–1893
CrossRef
Google scholar
|
[71] |
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:31
CrossRef
Google scholar
|
[72] |
Luciano DJ (2004) RNA editing of a miRNA precursor. Rna 10:1174–1177
CrossRef
Google scholar
|
[73] |
Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S
CrossRef
Google scholar
|
[74] |
Maciotta S, Meregalli M, Torrente Y (2013) The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7:265
CrossRef
Google scholar
|
[75] |
Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34
CrossRef
Google scholar
|
[76] |
Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235
CrossRef
Google scholar
|
[77] |
Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tárraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J
CrossRef
Google scholar
|
[78] |
Mituyama T, Yamada K, Hattori E, Okida H, Ono Y, Terai G, Yoshizawa A, Komori T, Asai K (2009) The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Research 37:D89–D92
CrossRef
Google scholar
|
[79] |
Moore MJ, Silver PA (2008) Global Analysis of mRNA splicing. RNA 14:197–203
CrossRef
Google scholar
|
[80] |
Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M
CrossRef
Google scholar
|
[81] |
Mostovich LA, Prudnikova TY, Kondratov AG, Loginova D, Vavilov PV, Rykova VI, Sidorov SV, Pavlova TV, Kashuba VI, Zabarovsky ER
CrossRef
Google scholar
|
[82] |
Nelson PT, Wang W-X, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–138
CrossRef
Google scholar
|
[83] |
Noorbakhsh J, Lang AH, Mehta P (2013) Intrinsic noise of microRNA-regulated genes and the ceRNA hypothesis. PLoS ONE 8:e72676
CrossRef
Google scholar
|
[84] |
Orang AV, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. I nt J Genom 2014:1–15
CrossRef
Google scholar
|
[85] |
Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent MicroRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7:e1001101
CrossRef
Google scholar
|
[86] |
Pan H, Hanada S, Zhao J, Mao L, Ma MZ (2012) Protein secretion is required for pregnancy-associated plasma protein-a to promote lung cancer growth in vivo. PLoS ONE 7:e48799
CrossRef
Google scholar
|
[87] |
Park YY, Kim SB, Han HD, Sohn BH, Kim JH, Liang J, Lu Y, Rodriguez-Aguayo C, Lopez-Berestein G, Mills GB, Sood AK, Lee JS (2013) Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology 58(1):182–191
CrossRef
Google scholar
|
[88] |
Parpart S, Wang XW (2013) MicroRNA regulation and its consequences in cancer. Curr Pathobiol Rep 1:71–79
CrossRef
Google scholar
|
[89] |
Peritz T, Zeng F, Kannanayakal TJ, Kilk K, Eiríksdóttir E, Langel U, Eberwine J (2006) Immunoprecipitation of mRNA-protein complexes. Nat Protoc 1:577–580
CrossRef
Google scholar
|
[90] |
Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling SC, Sun E, Wancewicz E, Mazur C
CrossRef
Google scholar
|
[91] |
Postel-Vinay S, Véron AS, Tirode F, Pierron G, Reynaud S, Kovar H, Oberlin O, Lapouble E, Ballet S, Lucchesi C
CrossRef
Google scholar
|
[92] |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596
CrossRef
Google scholar
|
[93] |
Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842
CrossRef
Google scholar
|
[94] |
Ratti A, Buratti E (2016) Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 138:95–111
CrossRef
Google scholar
|
[95] |
Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207
CrossRef
Google scholar
|
[96] |
Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208
CrossRef
Google scholar
|
[97] |
Sephton CF, Cenik C, Kucukural A, Dammer EB, Cenik B, Han Y, Dewey CM, Roth FP, Herz J, Peng J
CrossRef
Google scholar
|
[98] |
Skrzypski M, Dziadziuszko R, Jassem J (2011) MicroRNA in lung cancer diagnostics and treatment. Mutat Res 717:25–31
CrossRef
Google scholar
|
[99] |
Soneson C, Love MI, Robinson MD (2016) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research.
CrossRef
Google scholar
|
[100] |
Srinivasan S, Patric IR, Somasundaram K (2011) A ten-microRNA expression signature predicts survival in glioblastoma. PLoS One 6:e17438
CrossRef
Google scholar
|
[101] |
Sriram G, Birge RB (2010) Emerging roles for Crk in human cancer. Genes Cancer 1:1132–1139
CrossRef
Google scholar
|
[102] |
Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C, Wan J, Zhou F, Shao K, Sun Y
CrossRef
Google scholar
|
[103] |
Tarca AL, Drăghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatic s 25:75–82 (Oxford, England)
CrossRef
Google scholar
|
[104] |
Teittinen KJ, Kärkkäinen P, Salonen J, Rönnholm G, Korkeamäki H, Vihinen M, Kalkkinen N, Lohi O (2012) Nucleolar proteins with altered expression in leukemic cell lines. Leukemia Res 36:232–236
CrossRef
Google scholar
|
[105] |
Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, Konig J, Hortobagyi T, Nishimura AL, Zupunski V
CrossRef
Google scholar
|
[106] |
Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I, Susumu N, Aoki D, Inazawa J (2011) miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res 71:6450–6462
CrossRef
Google scholar
|
[107] |
Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: A method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386
CrossRef
Google scholar
|
[108] |
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP
CrossRef
Google scholar
|
[109] |
Woo HH, Laszlo CF, Greco S, Chambers SK (2012) Regulation of colony stimulating factor-1 expression and ovarian cancer cell behavior in vitro by miR-128 and miR-152. Mol Cancer 11:58
CrossRef
Google scholar
|
[110] |
Wysoczynski M, Miekus K, Jankowski K, Wanzeck J, Bertolone S, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2007) Leukemia inhibitory factor: a newly identified metastatic factor in rhabdomyosarcomas. Cancer Res 67:2131–2140
CrossRef
Google scholar
|
[111] |
Xiao S, Sanelli T, Dib S, Sheps D, Findlater J, Bilbao J, Keith J, Zinman L, Rogaeva E, Robertson J (2011) RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol and Cell Neurosci 47:167–180
CrossRef
Google scholar
|
[112] |
Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T
CrossRef
Google scholar
|
[113] |
Yu J, Cao Q, Mehra R, Laxman B, Yu J, Tomlins SA, Creighton CJ, Dhanasekaran SM, Shen R, Chen G
CrossRef
Google scholar
|
[114] |
Zhang Z, Almeida S, Lu Y, Nishimura AL, Peng L, Sun D, Wu B, Karydas AM, Tartaglia MC, Fong JC
CrossRef
Google scholar
|
[115] |
Zhou X, Zhao F, Wang ZN, Song YX, Chang H, Chiang Y, Xu HM (2012) Altered expression of miR-152 and miR-148a in ovarian cancer is related to cell proliferation. Oncol Rep 27:447–454
|
/
〈 | 〉 |