Hypertonia-linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion

Crystal A. Lee, Lih-Shen Chin, Lian Li

PDF(7738 KB)
PDF(7738 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (8) : 693-716. DOI: 10.1007/s13238-017-0469-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Hypertonia-linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion

Author information +
History +

Abstract

Hypertonia is a neurological dysfunction associated with a number of central nervous system disorders, including cerebral palsy, Parkinson’s disease, dystonia, and epilepsy. Genetic studies have identified a homozygous truncation mutation in Trak1 that causes hypertonia in mice. Moreover, elevated Trak1 protein expression is associated with several types of cancersand variants in Trak1 are linked to childhood absence epilepsy in humans. Despite the importance of Trak1 in health and disease, the mechanisms of Trak1 action remain unclear and the pathogenic effects of Trak1 mutation are unknown. Here we report that Trak1 has a crucial function in regulation of mitochondrial fusion. Depletion of Trak1 inhibits mitochondrial fusion, resulting in mitochondrial fragmentation, whereas overexpression of Trak1 elongates and enlarges mitochondria. Our analyses revealed that Trak1 interacts and colocalizes with mitofusins on the outer mitochondrial membrane and functions with mitofusins to promote mitochondrial tethering and fusion. Furthermore, Trak1 is required for stress-induced mitochondrial hyperfusion and pro-survival response. We found that hypertonia-associated mutation impairs Trak1 mitochondrial localization and its ability to facilitate mitochondrial tethering and fusion. Our findings uncover a novel function of Trak1 as a regulator of mitochondrial fusion and provide evidence linking dysregulated mitochondrial dynamics to hypertonia pathogenesis.

Keywords

mitochondria / mitochondrial fusion / mitochondrial tethering / mitofusin / hypertonia

Cite this article

Download citation ▾
Crystal A. Lee, Lih-Shen Chin, Lian Li. Hypertonia-linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion. Protein Cell, 2018, 9(8): 693‒716 https://doi.org/10.1007/s13238-017-0469-4

References

[1]
Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215.
CrossRef Google scholar
[2]
An Y, Zhou Y, Ren G, Tian Q, Lu Y, Li H (2011) Elevated expression of MGb2-Ag/TRAK1 is correlated with poor prognosis in patients with colorectal cancer. Int J Colorectal Dis 26 (11):1397–1404.
CrossRef Google scholar
[3]
Barel O, Christine VMM, Ben-Zeev B, Kandel J, Pri-Chen H, Stephen J (2017) Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy. Brain 140(3):568–581.
CrossRef Google scholar
[4]
Bar-On L, Molenaers G, Aertbelien E, Van Campenhout A, Feys H, Nuttin Bl (2015) Spasticity and its contribution to hypertonia in cerebral palsy. Biomed Res Int 2015:317047.
CrossRef Google scholar
[5]
Brickley K, Stephenson FA (2011) Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286(20):18079–18092.
CrossRef Google scholar
[6]
Brickley K, Smith MJ, Beck M, Stephenson FA (2005) GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J Biol Chem 280(15):14723–14732.
CrossRef Google scholar
[7]
Brocker C, Engelbrecht-Vandre S, Ungermann C (2010) Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 20(21):R943–R952.
CrossRef Google scholar
[8]
Cagalinec M, Safiulina D, Liiv M, Liiv J, Choubey V, Wareski P (2013) Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126(Pt 10):2187–2197.
CrossRef Google scholar
[9]
Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287.
CrossRef Google scholar
[10]
Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176.
CrossRef Google scholar
[11]
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200.
CrossRef Google scholar
[12]
Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280 (28):26185–26192.
CrossRef Google scholar
[13]
Chen J, Li L, Chin LS (2010) Parkinson disease protein DJ-1 converts from a zymogen to a protease by carboxyl-terminal cleavage. Hum Mol Genet 19(12):2395–2408.
CrossRef Google scholar
[14]
Chin LS, Raynor MC, Wei X, Chen HQ, Li L (2001) Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 276(10):7069–7078.
CrossRef Google scholar
[15]
Chioza BA, Aicardi J, Aschauer H, Brouwer O, Callenbach P, Covanis A (2009) Genome wide high density SNP-based linkage analysis of childhood absence epilepsy identifies a susceptibility locus on chromosome 3p23-p14. Epilepsy Res 87 (2–3):247–255.
CrossRef Google scholar
[16]
Cipolat S, de Brito OM, Zilio BD, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101(45):15927–15932.
CrossRef Google scholar
[17]
Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210.
CrossRef Google scholar
[18]
Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879.
CrossRef Google scholar
[19]
Eura Y, Ishihara N, Yokota S, Mihara K (2003) Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem 134 (3):333–344
CrossRef Google scholar
[20]
Eura Y, Ishihara N, Oka T, Mihara K (2006) Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J Cell Sci 119(Pt 23):4913–4925.
CrossRef Google scholar
[21]
Fallaize D, Chin LS, Li L (2015) Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways. Cell Signal 27(12):2543–2554.
CrossRef Google scholar
[22]
Gilbert SL, Zhang L, Forster ML, Anderson JR, Iwase T, Soliven B (2006) Trak1 mutation disrupts GABA(A) receptor homeostasis in hypertonic mice. Nat Genet 38(2):245–250.
CrossRef Google scholar
[23]
Giles LM, Li L, Chin LS (2009) Printor, a novel torsinA-interacting protein implicated in dystonia pathogenesis. J Biol Chem 284 (32):21765–21775.
CrossRef Google scholar
[24]
Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173(4):545–557.
CrossRef Google scholar
[25]
Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598.
CrossRef Google scholar
[26]
Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016.
CrossRef Google scholar
[27]
Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443 (7112):658–662.
CrossRef Google scholar
[28]
Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305(5685):858–862.
CrossRef Google scholar
[29]
Koutsopoulos OS, Laine D, Osellame L, Chudakov DM, Parton RG, Frazier AE (2010) Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. Biochem Biophys Acta 1803(5):564–574.
CrossRef Google scholar
[30]
Lazarou M, Jin SM, Kane LA, Youle RJ (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22(2):320–333.
CrossRef Google scholar
[31]
Lee SM, Olzmann JA, Chin LS, Li L (2011) Mutations associated with Charcot-Marie-Tooth disease cause SIMPLE protein mislocalization and degradation by the proteasome and aggresomeautophagy pathways. J Cell Sci 124(Pt 19):3319–3331.
CrossRef Google scholar
[32]
Lee SM, Chin LS, Li L (2012) Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking. J Cell Biol 199(5):799–816.
CrossRef Google scholar
[33]
Legros F, Lombes A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13(12):4343–4354.
CrossRef Google scholar
[34]
Li L, Chin LS (2003) The molecular machinery of synaptic vesicle exocytosis. Cell Mol Life Sci 60(5):942–960.
CrossRef Google scholar
[35]
Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A(2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61(4):541–555.
CrossRef Google scholar
[36]
Magrane J, Sahawneh MA, Przedborski S, Estevez AG, Manfredi G (2012) Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons. J Neurosci 32(1):229–242.
CrossRef Google scholar
[37]
Mishra P, Carelli V, Manfredi G, Chan DC (2014) Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 19(4):630–641.
CrossRef Google scholar
[38]
Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H (2005) Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem 280(26):25060–25070.
CrossRef Google scholar
[39]
Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159.
CrossRef Google scholar
[40]
Parsons MJ, Green DR (2010) Mitochondria in cell death. Essays Biochem 47:99–114.
CrossRef Google scholar
[41]
Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531.
CrossRef Google scholar
[42]
Pfeffer SR (1999) Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol 1(1):E17–E22.
CrossRef Google scholar
[43]
Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J(2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108(25):10190–10195.
CrossRef Google scholar
[44]
Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26(5):2175–2186.
CrossRef Google scholar
[45]
Rojo M, Legros F, Chateau D, Lombes A (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115(Pt 8):1663–1674
[46]
Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW (2003) Task Force on Childhood Motor D. Classification and definition of disorders causing hypertonia in childhood. Pediatrics 111(1):e89–e97
CrossRef Google scholar
[47]
Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114(Pt 5):867–874
[48]
Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105(52):20728–20733.
CrossRef Google scholar
[49]
Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143(2):351–358
CrossRef Google scholar
[50]
Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12(8):2245–2256
CrossRef Google scholar
[51]
Stowers RS, Megeath LJ, Gorska-Andrzejak J, Meinertzhagen IA, Schwarz TL (2002) Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36 (6):1063–1077
CrossRef Google scholar
[52]
Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S (2009) SLP-2 is required for stressinduced mitochondrial hyperfusion. EMBO J 28(11):1589–1600.
CrossRef Google scholar
[53]
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446.
CrossRef Google scholar
[54]
van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M(2013) TRAK/Milton motoradaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77(3):485–502.
CrossRef Google scholar
[55]
Wang X, Su B, Lee HG, Li X, Perry G, Smith MA (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103.
CrossRef Google scholar
[56]
Wang S, Xiao W, Shan S, Jiang C, Chen M, Zhang Y (2012) Multi-patterned dynamics of mitochondrial fission and fusion in a living cell. PLoS ONE 7(5):e19879.
CrossRef Google scholar
[57]
Webber E, Li L, Chin LS (2008) Hypertonia-associated protein Trak1 is a novel regulator of endosome-to-lysosome trafficking. J Mol Biol 382(3):638–651.
CrossRef Google scholar
[58]
Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochem Biophys Acta 1802(1):29–44.
CrossRef Google scholar
[59]
Yu IM, Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26:137–156.
CrossRef Google scholar
[60]
Zhang F, Ren G, Lu Y, Jin B, Wang J, Chen X (2009) Identification of TRAK1 (Trafficking protein, kinesin-binding 1) as MGb2-Ag: a novel cancer biomarker. Cancer Lett 274(2):250–258.
CrossRef Google scholar
[61]
Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32(40):4814–4824.
CrossRef Google scholar
[62]
Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36(5):449–451.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is an open access publication
AI Summary AI Mindmap
PDF(7738 KB)

Accesses

Citations

Detail

Sections
Recommended

/