Long non-coding RNA tagging and expression manipulation via CRISPR/Cas9-mediated targeted insertion

Tian-Lin Cheng, Zilong Qiu

PDF(1092 KB)
PDF(1092 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (9) : 820-825. DOI: 10.1007/s13238-017-0464-9
LETTER
LETTER

Long non-coding RNA tagging and expression manipulation via CRISPR/Cas9-mediated targeted insertion

Author information +
History +

Cite this article

Download citation ▾
Tian-Lin Cheng, Zilong Qiu. Long non-coding RNA tagging and expression manipulation via CRISPR/Cas9-mediated targeted insertion. Protein Cell, 2018, 9(9): 820‒825 https://doi.org/10.1007/s13238-017-0464-9

References

[1]
Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F (2012) Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet 8:e1003078
CrossRef Google scholar
[2]
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563
CrossRef Google scholar
[3]
Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416
CrossRef Google scholar
[4]
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
CrossRef Google scholar
[5]
Engreitz JM, Sirokman K, McDonel P, Shishkin AA, Surka C, Russell P, Grossman SR, Chow AY, Guttman M, Lander ES (2014) RNARNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell 159:188–199
CrossRef Google scholar
[6]
Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510
CrossRef Google scholar
[7]
Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, Attenello FJ, Villalta JE, Cho MY, Chen Y (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science.
CrossRef Google scholar
[8]
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
CrossRef Google scholar
[9]
Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62
CrossRef Google scholar
[10]
Schmid-Burgk JL, Honing K, Ebert TS, Hornung V (2016) CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism. Nat Commun 7:12338
CrossRef Google scholar
[11]
Stanford WL, Cohn JB, Cordes SP (2001) Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2:756–768
CrossRef Google scholar
[12]
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149
CrossRef Google scholar
[13]
Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46
CrossRef Google scholar
[14]
Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361
CrossRef Google scholar
[15]
Zhu S, Li W, Liu J, Chen CH, Liao Q, Xu P, Xu H, Xiao T, Cao Z, Peng J (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol 34:1279–1286
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is an open access publication
AI Summary AI Mindmap
PDF(1092 KB)

Accesses

Citations

Detail

Sections
Recommended

/