The emerging role and targetability of the TCA cycle in cancer metabolism
Nicole M. Anderson, Patrick Mucka, Joseph G. Kern, Hui Feng
The emerging role and targetability of the TCA cycle in cancer metabolism
The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.
glutaminolysis / the TCA cycle / cancer metabolism / glycolysis
[1] |
Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A, van Putten WJ, Rijneveld AW, Lowenberg B, Valk PJ (2010) Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116:2122–2126
CrossRef
Google scholar
|
[2] |
Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645
CrossRef
Google scholar
|
[3] |
Ahluwalia GS, Grem JL, Hao Z, Cooney DA (1990) Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther 46:243–271
CrossRef
Google scholar
|
[4] |
Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68:475–478
CrossRef
Google scholar
|
[5] |
Allen EL, Ulanet DB, Pirman D, Mahoney CE, Coco J, Si Y, Chen Y, Huang L, Ren J, Choe S
CrossRef
Google scholar
|
[6] |
Amary MF, Bacsi K, Maggiani F, Damato S, Halai D,Berisha F, Pollock R, O’Donnell P, Grigoriadis A, Diss T
CrossRef
Google scholar
|
[7] |
Anderson NM, Li D, Peng HL, Laroche FJ, Mansour MR, Gjini E, Aioub M, Helman DJ, Roderick JE, Cheng T
CrossRef
Google scholar
|
[8] |
Arenas Valencia C, Rodriguez Lopez ML, Cardona Barreto AY, Garavito Rodriguez E, Arteaga Diaz CE (2017) Hereditary leiomyomatosis and renal cell cancer syndrome: identification and clinical characterization of a novel mutation in the FH gene in a Colombian family. Fam Cancer 16:117–122
CrossRef
Google scholar
|
[9] |
Aspuria PJ, Lunt SY, Varemo L, Vergnes L, Gozo M, Beach JA, Salumbides B, Reue K, Wiedemeyer WR, Nielsen J
CrossRef
Google scholar
|
[10] |
Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Skoldberg F, Husebye ES, Eng C, Maher ER (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54
CrossRef
Google scholar
|
[11] |
Bardella C, Pollard PJ, Tomlinson I (2011) SDH mutations in cancer. Biochim Biophys Acta 1807:1432–1443
CrossRef
Google scholar
|
[12] |
Baron-Delage S,Mahraoui L, Cadoret A, Veissiere D, Taillemite JL, Chastre E, Gespach C, Zweibaum A, Capeau J, Brot-Laroche E
CrossRef
Google scholar
|
[13] |
Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, Hinojar-Gutierrez A, Timmers HJ, Hoefsloot LH, Hermsen MA
CrossRef
Google scholar
|
[14] |
Baysal BE (2007) A recurrent stop-codon mutation in succinate dehydrogenase subunit B gene in normal peripheral blood and childhood T-cell acute leukemia. PLoS ONE 2:e436
CrossRef
Google scholar
|
[15] |
Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN
CrossRef
Google scholar
|
[16] |
Baysal BE, Willett-Brozick JE, Lawrence EC, Drovdlic CM, Savul SA, McLeod DR, Yee HA, Brackmann DE, Slattery WH 3rd, Myers EN
CrossRef
Google scholar
|
[17] |
Belinsky MG, Rink L, Flieder DB, Jahromi MS, Schiffman JD, Godwin AK, Mehren M (2013a) Overexpression of insulin-like growth factor 1 receptor and frequent mutational inactivation of SDHA in wild-type SDHB-negative gastrointestinal stromal tumors. Genes Chromosomes Cancer 52:214–224
CrossRef
Google scholar
|
[18] |
Belinsky MG, Rink L, von Mehren M (2013b) Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors. Front Oncol 3:117
CrossRef
Google scholar
|
[19] |
Bennedbaek M, Rossing M, Rasmussen AK, Gerdes AM, Skytte AB, Jensen UB, Nielsen FC, Hansen TV (2016) Identification of eight novel SDHB, SDHC, SDHD germline variants in Danish pheochromocytoma/paraganglioma patients. Hered Cancer Clin Pract 14:13
CrossRef
Google scholar
|
[20] |
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120
CrossRef
Google scholar
|
[21] |
Bensaad K, Cheung EC, Vousden KH (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28:3015–3026
CrossRef
Google scholar
|
[22] |
Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W. H. Freeman and Company, New York
|
[23] |
Birnbaum MJ, Haspel HC, Rosen OM (1987) Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science (New York, NY) 235:1495–1498
CrossRef
Google scholar
|
[24] |
Bolzoni M, Chiu M, Accardi F, Vescovini R, Airoldi I, Storti P, Todoerti K, Agnelli L, Missale G, Andreoli R
CrossRef
Google scholar
|
[25] |
Brosnan JT (2003) Interorgan amino acid transport and its regulation. J Nutr 133:2068S–2072S
CrossRef
Google scholar
|
[26] |
Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, Jouanno E, Jeunemaitre X, Benit P, Tzagoloff A
CrossRef
Google scholar
|
[27] |
Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, Jais JP, Parrens M, Martin A, Xerri L, Brousset P
CrossRef
Google scholar
|
[28] |
Carvajal-Carmona LG, Alam NA, Pollard PJ, Jones AM, Barclay E, Wortham N, Pignatelli M, Freeman A, Pomplun S, Ellis I
CrossRef
Google scholar
|
[29] |
Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, Rempe SB, Weinstein JN (2014) The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood 123:3596–3606
CrossRef
Google scholar
|
[30] |
Chandel NS (2015) Navigating metabolism. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
|
[31] |
Chen JQ, Russo J (2012) Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta 1826:370–384
CrossRef
Google scholar
|
[32] |
Chen L, Liu T, Zhou J,Wang Y, Wang X, Di W, Zhang S (2014) Citrate synthase expression affects tumor phenotype and drug resistance in human ovarian carcinoma. PLoS ONE 9:e115708
CrossRef
Google scholar
|
[33] |
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108:8674–8679
CrossRef
Google scholar
|
[34] |
Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M
CrossRef
Google scholar
|
[35] |
Clarke SD (1993) Regulation of fatty acid synthase gene expression: an approach for reducing fat accumulation. J Anim Sci 71:1957–1965
CrossRef
Google scholar
|
[36] |
Contractor T, Harris CR (2012) p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 72:560–567
CrossRef
Google scholar
|
[37] |
Cummins TD, Holden CR, Sansbury BE, Gibb AA, Shah J, Zafar N, Tang Y, Hellmann J, Rai SN, Spite M
CrossRef
Google scholar
|
[38] |
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC
CrossRef
Google scholar
|
[39] |
Dannenberg H, Dinjens WN, Abbou M,Van Urk H, Pauw BK, Mouwen D, Mooi WJ, de Krijger RR (2002) Frequent germ-line succinate dehydrogenase subunit D gene mutations in patients with apparently sporadic parasympathetic paraganglioma. Clin Cancer Res 8:2061–2066
|
[40] |
DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313
CrossRef
Google scholar
|
[41] |
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345
CrossRef
Google scholar
|
[42] |
Douwes Dekker PB, Hogendoorn PC, Kuipers-Dijkshoorn N,Prins FA, van Duinen SG, Taschner PE, van der Mey AG, Cornelisse CJ (2003) SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J Pathol 201:480–486
CrossRef
Google scholar
|
[43] |
Dwight T, Mann K, Benn DE, Robinson BG, McKelvie P, Gill AJ, Winship I, Clifton-Bligh RJ (2013) Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 98:E1103–E1108
CrossRef
Google scholar
|
[44] |
Eagle H (1955) The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med 102:595–600
CrossRef
Google scholar
|
[45] |
Edmunds LR, Sharma L, Kang A, Lu J, Vockley J, Basu S, Uppala R, Goetzman ES, Beck ME, Scott D
CrossRef
Google scholar
|
[46] |
Eng C, Kiuru M, Fernandez MJ, Aaltonen LA (2003) A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 3:193–202
CrossRef
Google scholar
|
[47] |
Evenepoel L, Papathomas TG, Krol N, Korpershoek E, de Krijger RR, Persu A, Dinjens WN (2015) Toward an improved definition of the genetic and tumor spectrum associated with SDH germline mutations. Genet Med 17:610–620
CrossRef
Google scholar
|
[48] |
Fedorova MS, Kudryavtseva AV, Lakunina VA, Snezhkina AV, Volchenko NN, Slavnova EN, Danilova TV, Sadritdinova AF, Melnikova NV, Belova AA
CrossRef
Google scholar
|
[49] |
Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med.
CrossRef
Google scholar
|
[50] |
Galera-Ruiz H, Gonzalez-Campora R, Rey-Barrera M, Rollon-Mayordomo A, Garcia-Escudero A, Fernandez-Santos JM, DeMiguel M, Galera-Davidson H (2008) W43X SDHD mutation in sporadic head and neck paraganglioma. Anal Quant Cytol Histol 30:119–123
|
[51] |
Gameiro PA, Yang J, Metelo AM, Perez-Carro R, Baker R, Wang Z, Arreola A, Rathmell WK, Olumi A, Lopez-Larrubia P
CrossRef
Google scholar
|
[52] |
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT
CrossRef
Google scholar
|
[53] |
Gao C, Shen Y, Jin F, Miao Y, Qiu X (2016) Cancer stem cells in small cell lung cancer cell line H446: higher dependency on oxidative phosphorylation and mitochondrial substrate-level phosphorylation than non-stem cancer cells. PLoS ONE 11:e0154576
CrossRef
Google scholar
|
[54] |
Gardie B, Remenieras A, Kattygnarath D, Bombled J, Lefevre S, Perrier-Trudova V, Rustin P, Barrois M, Slama A, Avril MF
CrossRef
Google scholar
|
[55] |
Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899
CrossRef
Google scholar
|
[56] |
Ghiam AF, Cairns RA, Thoms J, Dal Pra A, Ahmed O, Meng A, Mak TW, Bristow RG (2012) IDH mutation status in prostate cancer. Oncogene 31:3826
CrossRef
Google scholar
|
[57] |
Gibson GE, Starkov A, Blass JP, Ratan RR, Beal MF (2010) Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta 1802:122–134
CrossRef
Google scholar
|
[58] |
Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39:251–257
CrossRef
Google scholar
|
[59] |
Gimm O, Armanios M, Dziema H, Neumann HP, Eng C (2000) Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res 60:6822–6825
|
[60] |
Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17:71–77
CrossRef
Google scholar
|
[61] |
Gottlieb E,Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5:857–866
CrossRef
Google scholar
|
[62] |
Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X, Slocum KL, Pu M,Lin F, Vickers C
CrossRef
Google scholar
|
[63] |
Griffiths M, Keast D, Patrick G, Crawford M, Palmer TN (1993) The role of glutamine and glucose analogues in metabolic inhibition of human myeloid leukaemia in vitro. Int J Biochem 25:1749–1755
CrossRef
Google scholar
|
[64] |
Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM
CrossRef
Google scholar
|
[65] |
Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ,Chen G, Lemons JM, Karantza V
CrossRef
Google scholar
|
[66] |
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
CrossRef
Google scholar
|
[67] |
Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H, Devilee P, Cremers CW, Schiffman JD, Bentz BG
CrossRef
Google scholar
|
[68] |
Hemerly JP, Bastos AU, Cerutti JM (2010) Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur J Endocrinol 163:747–755
CrossRef
Google scholar
|
[69] |
Hoekstra AS, de Graaff MA, Briaire-de Bruijn IH, Ras C, Seifar RM, van Minderhout I, Cornelisse CJ, Hogendoorn PC, Breuning MH, Suijker J
CrossRef
Google scholar
|
[70] |
Hoque MO, Kim MS, Ostrow KL, Liu J, Wisman GB, Park HL, Poeta ML, Jeronimo C, Henrique R, Lendvai A
CrossRef
Google scholar
|
[71] |
Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33:469–477
CrossRef
Google scholar
|
[72] |
Ilic N,Birsoy K, Aguirre AJ, Kory N, Pacold ME, Singh S, Moody SE, DeAngelo JD, Spardy NA, Freinkman E
CrossRef
Google scholar
|
[73] |
Italiano A, Chen CL, Sung YS, Singer S, DeMatteo RP, LaQuaglia MP, Besmer P, Socci N, Antonescu CR (2012) SDHA loss of function mutations in a subset of young adult wild-type gastrointestinal stromal tumors. BMC Cancer 12:408
CrossRef
Google scholar
|
[74] |
Jacque N, Ronchetti AM, Larrue C, Meunier G, Birsen R, Willems L, Saland E, Decroocq J, Maciel TT, Lambert M
CrossRef
Google scholar
|
[75] |
Janeway KA, Kim SY, Lodish M, Nose V, Rustin P, Gaal J, Dahia PL, Liegl B, Ball ER, Raygada M
CrossRef
Google scholar
|
[76] |
Jiang Q, Zhang Y, Zhou YH, Hou YY, Wang JY, Li JL, Li M, Tong HX, Lu WQ (2015) A novel germline mutation in SDHA identified in a rare case of gastrointestinal stromal tumor complicated with renal cell carcinoma. Int J Clin Exp Pathol 8:12188–12197
|
[77] |
Juang HH (2004) Modulation of mitochondrial aconitase on the bioenergy of human prostate carcinoma cells. Mol Genet Metab 81:244–252
CrossRef
Google scholar
|
[78] |
Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, Vander Heiden MG, Miller G, Drebin JA, Bar-Sagi D
CrossRef
Google scholar
|
[79] |
Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI, Lee JY, Yoo NJ, Lee SH (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125:353–355
CrossRef
Google scholar
|
[80] |
Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP (2016) Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531(7592):110–113
CrossRef
Google scholar
|
[81] |
Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185
CrossRef
Google scholar
|
[82] |
Kishton RJ, Rathmell JC (2015) Novel therapeutic targets of tumor metabolism. Cancer J 21:62–69
CrossRef
Google scholar
|
[83] |
Kishton RJ, Barnes CE, Nichols AG, Cohen S, Gerriets VA, Siska PJ, Macintyre AN, Goraksha-Hicks P,de Cubas AA, Liu T
CrossRef
Google scholar
|
[84] |
Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S
CrossRef
Google scholar
|
[85] |
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185
|
[86] |
Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, Badoual C, Gadessaud N, Venisse A, Bayley JP
CrossRef
Google scholar
|
[87] |
Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B, Hunault-Berger M, Slama B, Vey N, Lacombe C
CrossRef
Google scholar
|
[88] |
Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405
CrossRef
Google scholar
|
[89] |
Launonen V, Vierimaa O, Kiuru M,Isola J, Roth S, Pukkala E, Sistonen P, Herva R, Aaltonen LA (2001) Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A 98:3387–3392
CrossRef
Google scholar
|
[90] |
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H
CrossRef
Google scholar
|
[91] |
Lee SC, Chionh SB, Chong SM, Taschner PE (2003) Hereditary paraganglioma due to the SDHD M1I mutation in a second Chinese family: a founder effect? Laryngoscope 113:1055–1058
CrossRef
Google scholar
|
[92] |
Lemonnier F, Cairns RA, Inoue S, Li WY, Dupuy A, Broutin S, Martin N, Fataccioli V, Pelletier R, Wakeham A
CrossRef
Google scholar
|
[93] |
Lin CC, Cheng TL, Tsai WH, Tsai HJ, Hu KH, Chang HC, Yeh CW, Chen YC, Liao CC, Chang WT (2012) Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci Rep 2:785
CrossRef
Google scholar
|
[94] |
Lo M, Wang YZ, Gout PW (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602
CrossRef
Google scholar
|
[95] |
Lycan TW, Pardee TS, Petty WJ, Bonomi M, Alistar A,Lamar ZS, Isom S,Chan MD, Miller AA, Ruiz J (2016) A phase II clinical trial of CPI-613 in patients with relapsed or refractory small cell lung carcinoma. PLoS ONE 11:e0164244
CrossRef
Google scholar
|
[96] |
Mannelli M,Ercolino T, Giache V, Simi L, Cirami C, Parenti G (2007) Genetic screening for pheochromocytoma: should SDHC gene analysis be included? J Med Genet 44:586–587
CrossRef
Google scholar
|
[97] |
Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD
CrossRef
Google scholar
|
[98] |
Márquez J, Alonso FJ, Matés JM, Segura JA, Martín-Rufián M, Campos-Sandoval JA (2017) Glutamine addiction in gliomas. Neurochem Res 42(6):1735–1746
CrossRef
Google scholar
|
[99] |
Martinez-Outschoorn UE, Peiris-Pages M,Pestell RG, Sotgia F, Lisanti MP (2017) Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 14:11–31
CrossRef
Google scholar
|
[100] |
Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, Yuan C, Bao Y, Townsend MK, Tworoger SS
CrossRef
Google scholar
|
[101] |
McWhinney SR, Pasini B, Stratakis CA (2007) Familial gastrointestinal stromal tumors and germ-line mutations. N Engl J Med 357:1054–1056
CrossRef
Google scholar
|
[102] |
Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R (2017) Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 31:272–281
CrossRef
Google scholar
|
[103] |
Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R (2004) Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol 24:1369–1383
|
[104] |
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L
CrossRef
Google scholar
|
[105] |
Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990
CrossRef
Google scholar
|
[106] |
Miettinen M, Lasota J (2014) Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs)—a review. Int J Biochem Cell Biol 53:514–519
CrossRef
Google scholar
|
[107] |
Miettinen M, Killian JK, Wang ZF, Lasota J, Lau C, Jones L, Walker R, Pineda M, Zhu YJ, Kim SY
CrossRef
Google scholar
|
[108] |
Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, Matsuura M, Ushijima M, Mashima T, Seimiya H, Satoh Y
CrossRef
Google scholar
|
[109] |
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–388
CrossRef
Google scholar
|
[110] |
Murugan AK, Bojdani E, Xing M (2010) Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem Biophys Res Commun 393:555–559
CrossRef
Google scholar
|
[111] |
Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M, Buchta M, Franke G, Klisch J, Bley TA
CrossRef
Google scholar
|
[112] |
Neumann HP, Erlic Z, Boedeker CC, Rybicki LA, Robledo M, Hermsen M, Schiavi F, Falcioni M, Kwok P, Bauters C
CrossRef
Google scholar
|
[113] |
Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270
CrossRef
Google scholar
|
[114] |
Obre E, Rossignol R (2015) Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol 59:167–181
CrossRef
Google scholar
|
[115] |
Oettgen HF, Old LJ, Boyse EA, Campbell HA, Philips FS, Clarkson BD, Tallal L, Leeper RD, Schwartz MK, Kim JH (1967) Inhibition of leukemias in man by L-asparaginase. Cancer Res 27:2619–2631
|
[116] |
Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772
CrossRef
Google scholar
|
[117] |
Ostrow KL, Park HL, Hoque MO, Kim MS, Liu J, Argani P, Westra W, Van Criekinge W, Sidransky D (2009) Pharmacologic unmasking of epigenetically silenced genes in breast cancer. Clin Cancer Res 15:1184–1191
CrossRef
Google scholar
|
[118] |
Oudijk L, Gaal J, Korpershoek E, van Nederveen FH, Kelly L, Schiavon G, Verweij J, Mathijssen RH, den Bakker MA, Oldenburg RA
CrossRef
Google scholar
|
[119] |
Ovejera AA, Houchens DP, Catane R, Sheridan MA, Muggia FM (1979) Efficacy of 6-diazo-5-oxo-L-norleucine and N-[N-gammaglutamyl-6-diazo-5-oxo-norleucinyl]-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice. Cancer Res 39:3220–3224
|
[120] |
Paik JY, Toon CW, Benn DE, High H, Hasovitz C, Pavlakis N, Clifton-Bligh RJ, Gill AJ (2014) Renal carcinoma associated with succinate dehydrogenase B mutation: a new and unique subtype of renal carcinoma. J Clin Oncol 32:e10–e13
CrossRef
Google scholar
|
[121] |
Pantaleo MA, Astolfi A, Indio V, Moore R, Thiessen N, Heinrich MC, Gnocchi C, Santini D, Catena F, Formica S
CrossRef
Google scholar
|
[122] |
Papathanassiou D, Bruna-Muraille C, Jouannaud C, Gagneux-Lemoussu L,Eschard JP, Liehn JC (2009) Single-photon emission computed tomography combined with computed tomography (SPECT/CT) in bone diseases. Joint Bone Spine 76:474–480
CrossRef
Google scholar
|
[123] |
Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A (2010) IDH1 and IDH2 mutation analysis in chronic- and blastphase myeloproliferative neoplasms. Leukemia 24:1146–1151
CrossRef
Google scholar
|
[124] |
Pardee TS, Lee K, Luddy J, Maturo C, Rodriguez R, Isom S, Miller LD, Stadelman KM, Levitan D, Hurd D
CrossRef
Google scholar
|
[125] |
Parmentier JH, Maggi M, Tarasco E, Scotti C, Avramis VI, Mittelman SD (2015) Glutaminase activity determines cytotoxicity of L-asparaginases on most leukemia cell lines. Leuk Res 39:757–762
CrossRef
Google scholar
|
[126] |
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL
CrossRef
Google scholar
|
[127] |
Pasini B, McWhinney SR, Bei T, Matyakhina L, Stergiopoulos S, Muchow M, Boikos SA, Ferrando B, Pacak K, Assie G
CrossRef
Google scholar
|
[128] |
Pathania D, Millard M, Neamati N (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61:1250–1275
CrossRef
Google scholar
|
[129] |
Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47
CrossRef
Google scholar
|
[130] |
Peczkowska M, Cascon A, Prejbisz A, Kubaszek A, Cwikla BJ, Furmanek M, Erlic Z, Eng C, Januszewicz A, Neumann HP (2008) Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation. Nat Clin Pract Endocrinol Metab 4:111–115
CrossRef
Google scholar
|
[131] |
Pfaffenroth EC, Linehan WM (2008) Genetic basis for kidney cancer: opportunity for disease-specific approaches to therapy. Expert Opin Biol Ther 8:779–790
CrossRef
Google scholar
|
[132] |
Pillai S, Gopalan V, Lo CY, Liew V, Smith RA, Lam AK (2017) Silent genetic alterations identified by targeted next-generation sequencing in pheochromocytoma/paraganglioma: a clinicopathological correlations. Exp Mol Pathol 102:41–46
CrossRef
Google scholar
|
[133] |
Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ
CrossRef
Google scholar
|
[134] |
Pusch S, Sahm F, Meyer J, Mittelbronn M, Hartmann C, von Deimling A (2011) Glioma IDH1 mutation patterns off the beaten track. Neuropathol Appl Neurobiol 37:428–430
CrossRef
Google scholar
|
[135] |
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774
CrossRef
Google scholar
|
[136] |
Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–2676
|
[137] |
Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F,Maher ER (2008) Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 100:1260–1262
CrossRef
Google scholar
|
[138] |
Rodman SN, Spence JM, Ronnfeldt TJ, Zhu Y, Solst SR, O’Neill RA, Allen BG, Guan X,Spitz DR, Fath MA (2016) Enhancement of radiation response in breast cancer stem cells by inhibition of thioredoxin- and glutathione-dependent metabolism. Radiat Res 186:385–395
CrossRef
Google scholar
|
[139] |
Roh JL,Kim EH , Jang HJ, Park JY, Shin D (2016) Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett 381:96–103
CrossRef
Google scholar
|
[140] |
Rustin P, Bourgeron T, Parfait B, Chretien D, Munnich A, Rötig A (1997) Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim Biophys Acta 1361:185–197
CrossRef
Google scholar
|
[141] |
Sajnani K, Islam F, Smith RA, Gopalan V, Lam AK (2017) Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie 135:164–172
CrossRef
Google scholar
|
[142] |
Schimke RN, Collins DL, Stolle CA (2010) Paraganglioma, neuroblastoma, and a SDHB mutation: resolution of a 30-year-old mystery. Am J Med Genet A 152A:1531–1535
CrossRef
Google scholar
|
[143] |
Schlichtholz B, Turyn J, Goyke E, Biernacki M, Jaskiewicz K, Sledzinski Z, Swierczynski J (2005) Enhanced citrate synthase activity in human pancreatic cancer. Pancreas 30:99–104
CrossRef
Google scholar
|
[144] |
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD
CrossRef
Google scholar
|
[145] |
Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408
CrossRef
Google scholar
|
[146] |
Shi J, Sun B, Shi W, Zuo H, Cui D, Ni L, Chen J(2015) Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol 36:655–662
CrossRef
Google scholar
|
[147] |
Shitara K, Doi T, Nagano O, Fukutani M, Hasegawa H, Nomura S, Sato A, Kuwata T, Asai K, Einaga Y
CrossRef
Google scholar
|
[148] |
Simi L, Sestini R,Ferruzzi P,Gagliano MS,Gensini F,Mascalchi M,Guerrini L, Pratesi C, Pinzani P, Nesi G
CrossRef
Google scholar
|
[149] |
Singh KK, Desouki MM, Franklin RB, Costello LC (2006) Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol Cancer 5:14
CrossRef
Google scholar
|
[150] |
Sjursen W, Halvorsen H, Hofsli E, Bachke S, Berge A, Engebretsen LF, Falkmer SE, Falkmer UG, Varhaug JE (2013) Mutation screening in a Norwegian cohort with pheochromocytoma. Fam Cancer 12:529–535
CrossRef
Google scholar
|
[151] |
Smit DL, Mensenkamp AR, Badeloe S, Breuning MH, Simon ME, van Spaendonck KY, Aalfs CM, Post JG, Shanley S, Krapels IP
CrossRef
Google scholar
|
[152] |
Snezhkina AV, Krasnov GS, Zaretsky AR, Zhavoronkov A, Nyushko KM, Moskalev AA, Karpova IY, Afremova AI, Lipatova AV, Kochetkov DV
CrossRef
Google scholar
|
[153] |
Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25:272–281
CrossRef
Google scholar
|
[154] |
Strohecker AM, White E (2014) Autophagy promotes BrafV600Edriven lung tumorigenesis by preserving mitochondrial metabolism. Autophagy 10:384–385
CrossRef
Google scholar
|
[155] |
Stuart SD, Schauble A, Gupta S, Kennedy AD, Keppler BR, Bingham PM, Zachar Z (2014) A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process. Cancer Metab 2:4
CrossRef
Google scholar
|
[156] |
Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E, Sudarshan S, Licht JD, Deberardinis RJ, Chandel NS (2013) The proto-oncometabolite fumarate binds glutathione to amplify ROSdependent signaling. Mol Cell 51:236–248
CrossRef
Google scholar
|
[157] |
Svensson RU, Shaw RJ (2017) Lipid synthesis is a metabolic liability of non-small cell lung cancer. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
|
[158] |
Swinnen JV, Roskams T, Joniau S, Van Poppel H, Oyen R, Baert L, Heyns W, Verhoeven G (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98:19–22
CrossRef
Google scholar
|
[159] |
Taschner PE, Jansen JC, Baysal BE, Bosch A, Rosenberg EH, Brocker-Vriends AH, van Der Mey AG, van Ommen GJ, Cornelisse CJ, Devilee P (2001) Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer 31:274–281
CrossRef
Google scholar
|
[160] |
Tateishi K, Wakimoto H, Iafrate AJ, Tanaka S, Loebel F, Lelic N, Wiederschain D, Bedel O, Deng G, Zhang B
CrossRef
Google scholar
|
[161] |
Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S
CrossRef
Google scholar
|
[162] |
Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, Turner ML, Stewart L, Duray P,Tourre O, Sharma N
CrossRef
Google scholar
|
[163] |
Tufton N, Roncaroli F, Hadjidemetriou I,Dang MN, Denes J, Guasti L, Thom M, Powell M, Baldeweg SE, Fersht N
CrossRef
Google scholar
|
[164] |
Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M, Morrison CD, Lehtonen R, Januszewicz A, Jarvinen H, Juhola M
CrossRef
Google scholar
|
[165] |
Wahlstrom T, Henriksson MA (2015) Impact of MYC in regulation of tumor cell metabolism. Biochim Biophys Acta 1849:563–569
CrossRef
Google scholar
|
[166] |
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J
CrossRef
Google scholar
|
[167] |
Wang P, Mai C, Wei YL, Zhao JJ, Hu YM, Zeng ZL, Yang J, Lu WH, Xu RH, Huang P (2013) Decreased expression of the mitochondrial metabolic enzyme aconitase (ACO2) is associated with poor prognosis in gastric cancer. Med Oncol 30:552
CrossRef
Google scholar
|
[168] |
Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, Tang L, Dong LW, Qin CJ, Huang S, Zhao LH
CrossRef
Google scholar
|
[169] |
Wang D, Yin L, Wei J, Yang Z, Jiang G (2017) ATP citrate lyase is increased in human breast cancer, depletion of which promotes apoptosis. Tumour Biol 39:1010428317698338
CrossRef
Google scholar
|
[170] |
Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530
CrossRef
Google scholar
|
[171] |
Ward PS, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol 4:a006783
CrossRef
Google scholar
|
[172] |
Wei MH, Toure O, Glenn GM, Pithukpakorn M, Neckers L,Stolle C, Choyke P, Grubb R, Middelton L, Turner ML
CrossRef
Google scholar
|
[173] |
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB
CrossRef
Google scholar
|
[174] |
Wong MH, Tan CS, Lee SC, Yong Y, Ooi AS, Ngeow J, Tan MH (2014) Potential genetic anticipation in hereditary leiomyomatosis-renal cell cancer (HLRCC). Fam Cancer 13:281–289
CrossRef
Google scholar
|
[175] |
Xin M, Qiao Z, Li J, Liu J, Song S, Zhao X, Miao P, Tang T, Wang L, Liu W
CrossRef
Google scholar
|
[176] |
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT
CrossRef
Google scholar
|
[177] |
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ
CrossRef
Google scholar
|
[178] |
Yang Y, Lane AN, Ricketts CJ, Sourbier C, Wei MH, Shuch B, Pike L, Wu M, Rouault TA, Boros LG
CrossRef
Google scholar
|
[179] |
Yang M, Ternette N, Su H, Dabiri R, Kessler BM, Adam J,Teh BT, Pollard PJ (2014) The succinated proteome of FH-mutant tumours. Metabolites 4:640–654
CrossRef
Google scholar
|
[180] |
Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29:6409–6417
CrossRef
Google scholar
|
[181] |
Yen K, Travins J, Wang F, David MD, Artin E, Straley K, Padyana A, Gross S, DeLaBarre B,Tobin E
CrossRef
Google scholar
|
[182] |
Ylisaukko-oja SK, Cybulski C, Lehtonen R, Kiuru M, Matyjasik J, Szymanska A, Szymanska-Pasternak J, Dyrskjot L, Butzow R, Orntoft TF
CrossRef
Google scholar
|
[183] |
Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Mates JM, Alonso FJ, Wang C, Seo Y
CrossRef
Google scholar
|
[184] |
Zachar Z, Marecek J, Maturo C, Gupta S, Stuart SD, Howell K, Schauble A, Lem J, Piramzadian A, Karnik S
CrossRef
Google scholar
|
[185] |
Zantour B, Guilhaume B, Tissier F, Louvel A, Jeunemaitre X, Gimenez-Roqueplo AP, Bertagna X (2004) A thyroid nodule revealing a paraganglioma in a patient with a new germline mutation in the succinate dehydrogenase B gene. Eur J Endocrinol 151:433–438
CrossRef
Google scholar
|
[186] |
Zhang C, Lin M, Wu R, Wang X,Yang B, Levine AJ, Hu W, Feng Z (2011) Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci USA 108:16259–16264
CrossRef
Google scholar
|
[187] |
Zhang Y, Wei H,Tang K, Lin D, Zhang C, Mi Y, Wang L, Wang C, Wang M, Wang J (2012) Mutation analysis of isocitrate dehydrogenase in acute lymphoblastic leukemia. Genet Test Mol Biomark 16:991–995
CrossRef
Google scholar
|
[188] |
Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ
CrossRef
Google scholar
|
[189] |
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016) Current challenges in cancer treatment. Clin Ther 38:1551–1566
CrossRef
Google scholar
|
/
〈 | 〉 |